
Principles of Programming Languages
Type Checking

1/138



Why Types

Adding types to a program has three key
advantages:

2/138



Why Types

• It allows the compiler to detect errors that
would otherwise only be detected at
runtime. It is much better to detect errors as
early as possible in the development cycle.

3/138



Why Types

• It serves as excellent documentation by
reflecting the intention of the programmer.

4/138



Why Types

• More importantly, it helps the programmer
model the solution she is designing. A good
typing system drives programs towards
systematic models - both for data and for
code.

5/138



Why Types

Adding types is sometimes “annoying” because
it can make programs longer, and for

complicated types or generic types - it can
make simple programs complex. For example, a

function such as x => x (known as the
identity function) has a complex type (because
it can work on any possible types). We will see

further examples of this later.

6/138



Why Types

TypeScript alleviates these 2 problems by:

• Making type annotations optional.
• Making type annotations implicit (that is,
where the type of expressions can be
inferred from the code, it will be).

This approach is called gradual typing. As a
general strategy in programming languages,

gradual typing allows programmers to trade-off
prototyping and type safety.

7/138



Runtime Errors Caused by Unexpected Values

Consider the following type definition and the
function operating over values in this type:

8/138



Runtime Errors Caused by Unexpected Values

interface Date {
year: number;
month: number;
day: number;

}

interface Person {
birthDate: Date;
name: string;

}

9/138



Runtime Errors Caused by Unexpected Values

import { map } from "ramda";

const computeAges =
people => map(p => 2021 - p.birthDate.year,

people);

10/138



Runtime Errors Caused by Unexpected Values

let people = [{ name: "Ben",
birthDate: { year: 1989,

month: 1,
day: 8 } },

{ name: "Itay",
birthDate: { year: 1994,

month: 8,
day: 17 } }];

computeAges(people); // => [ 32, 27 ]

11/138



Runtime Errors Caused by Unexpected Values

Consider now what happens if we invoke
computeAges on this value:

let people = [{ name: "Ben" },
{ name: "Itay" }];

computeAges(people);
// => TypeError: Cannot read property 'year'
// of undefined

12/138



Runtime Errors Caused by Unexpected Values

We obtain a runtime error when we try to
access a property of a map which is not

provided in the actual value passed to the
function. In other words, there is an

incompatibility between the value passed to
the function and the type of the value expected

by the function.

13/138



Runtime Errors Caused by Unexpected Values

Type annotations are introduced in
programming languages to enable type
checking. Type checking is a process that
analyzes a program and verifies that such

incompatibilities between variables or function
parameters and the values to which they are

bound at runtime are impossible for all
possible executions of the program.

14/138



Runtime Errors Caused by Unexpected Values

When type checking is performed at
compilation, it detects errors that could

otherwise occur later at runtime. This is a much
better situation - errors caught early are errors

that are avoided. Errors caught at runtime
cause damage.

Compilers that implement type checking
provide an extremely powerful form of program

verification.

15/138



Why Would Anyone Give Up on Type Checking?

Given that type checking is such a powerful tool
- why would any programmer want to give up

this and use a programming language that does
not provide it?

16/138



Why Would Anyone Give Up on Type Checking?

The arguments usually advanced by
proponents of languages without type checking

are the following:

17/138



Why Would Anyone Give Up on Type Checking?

• Conciseness: Programs without type
annotations are more concise. Conciseness
is important because it leads to more
readability and better understanding.
For example, the function above with types
looks like:
const computeAges: (ps: Person[]) => number[] =
ps => map(p => 2021 - p.birthDate.year,

ps);

18/138



Why Would Anyone Give Up on Type Checking?

This argument is quite weak - because the
additional type annotation is in fact a form of
documentation which clarifies the intention of

the programmer.

For example, consider the untyped function:

const add = (x, y) => x + y;

19/138



Why Would Anyone Give Up on Type Checking?

In JavaScript, the + operator works on a wide
range of values (number, strings, arrays). It

often produces unexpected output for example:

[1, 2] + ["a", "b"]; // => 1,2a,b

20/138



Why Would Anyone Give Up on Type Checking?

If a programmer declares that the intention of
this function is to operate only over number, it
clarifies the way the function can be tested and
what it means for the function to be correct:

const add: (x: number, y: number) => number =
(x, y) => x + y;

21/138



Why Would Anyone Give Up on Type Checking?

• Untyped languages are easier to adjust to
incremental changes.

22/138



Why Would Anyone Give Up on Type Checking?

For example, consider a program that operates
over values of type Person as described above.

If later, after the program has been put in
production, we start introducing additional

data for some persons - so that we add a new
property address.

23/138



Why Would Anyone Give Up on Type Checking?

A program in an untyped language can be
“patched” incrementally to support such values
- by adding runtime checks for the presence of
the additional property. Such patching would
require much more in-depth modifications in a

statically type-checked language.

24/138



Why Would Anyone Give Up on Type Checking?

• Untyped languages encourage interactive
programming.

25/138



Why Would Anyone Give Up on Type Checking?

When programmers interact with an interpreter,
interactively, try a version of a function, then
revise it, run tests, modify the structure of the

values, revise the functions in fast
experimentation cycles, with no compilation
and direct interpretation - untyped languages

allow faster experimentation.

26/138



Why Would Anyone Give Up on Type Checking?

The counter argument is once the programmer
has completed the experimentation /

prototyping phase, the second stage of cleaning
up with type definition can only improve the
quality of the program and its design. Gradual
typing is attractive because it supports both

types of operations and transition from
prototype to typed correct versions.

27/138



Why Would Anyone Give Up on Type Checking?

There are other arguments in favor of untyped
languages which we will not develop further
that are related to the type of polymorphism

that is encouraged by each style. In this course,
we strongly adopt the typed style of

programming (we have chosen our camp ©).

28/138



Types in TypeScript

TypeScript adds optional type declarations to
JavaScript.

29/138



Types in TypeScript

• Type declarations are optional. If they are
present, they are checked, otherwise no
check is performed. This means that regular
JavaScript with no type annotations at all
are valid TypeScript expressions.

30/138



Types in TypeScript

• The TypeScript compiler performs two tasks:
(1) It translates a TypeScript program into a
JavaScript program
(2) It checks that the program satisfies all
the type declarations specified in the
program.

31/138



Types in TypeScript

• Type annotations can be implicit and
inferred by the TypeScript compiler.

32/138



Types in TypeScript

The following TypeScript expression:
const add: (a: number, b: number) => number =

(a, b) => a + b;
add(1, 2);

is translated by tsc (the TypeScript compiler)
into:

const add = (a, b) => a + b;
add(1, 2);

33/138



Type Annotations

Type annotations are optional in TypeScript.
They can occur in the following contexts:

• After variable declarations:
let x: <type> = ...

• As part of a function signature:
(param: <type>, ...) => ...

function f(param: <type>, ...): <type> {
...

}

34/138



Type Annotations

Type annotation are written in a specific form -
which is called the type language. The type

language is used to describe the expected type
of variables, parameters or the value returned

by functions.

35/138



Type Expression Denotation

In general, all type expressions in the type
language are used to refer to a specific set of
values. The relation between a type expression
and a set of values to which it corresponds is

called denotation (The denotation relation is in
general the relation that exists between a name

and the object to which the name refers).

36/138



Atomic Type Expressions

The simplest type language expression refers to
a primitive type - for example number,

boolean, string.
It is used as follows:

let x: number = 2;
let a: string = "a";
let b: boolean = true;

37/138



Atomic Type Expressions

These atomic type expressions denote the
primitive sets of values that are defined in

JavaScript (set of all number values, set of all
string values, set of all boolean values).

38/138



Atomic Type Expressions

More complex type language expressions are
needed to describe types over compound

values. These compound type expressions are
constructed recursively by combining smaller

type expressions.

39/138



Array Type Expressions

To describe a homogeneous array, the following
notation is used: <type>[].

let stringArr: string[] = ["a", "b", "c"];

40/138



Array Type Expressions

The following values are not compatible with
this type annotation:

stringArr = ["a", 1];
// => Type 'number' is not assignable
// to type 'string'.
stringArr[0] = true;
// => Type 'true' is not assignable
// to type 'string'.

41/138



Map Type Expressions

To describe map types, the following notation is
used: { <key>: <type>; ... }.

let p: { name: string, cs: boolean, age: number} =
{ name: "Ben", cs: true, age: 32 };

42/138



Map Type Expressions

The expected meaning of the map type
description is that all the keys in the

annotation must be present in the value with
the described type.

There could be more keys (as illustrated in the
next example) - but all the keys that are
specified in the type must be present.

43/138



Map Type Expressions

let p = {
name: "Ben",
cs: true,
gender: "male",
age: 32

};

let p2: {name: string, cs: boolean, age: number} =
p;

44/138



Map Type Expressions

Note, however, that when we bind a variable to
a literal expression, the TypeScript compiler

demands that the type of the literal be exactly
that of the variable - with no extension.

let p: {name: string, cs: boolean, age: number} = {
name: "Ben",
cs: true,
gender: "male",
age: 32

};
// => Object literal may only specify
// known properties...

45/138



Map Types Relationships

The map type {} denotes all possible map
values.

The map type { a: string } denotes all
maps that have a key a with a string value -

for example:

{ a: "x" }, { a: "y", b: 1 }
and the following values are not part of this

type:

{}, { b: 1 }, { a: 1 }
46/138



Map Types Relationships

A map type { a: string, b: number }
denotes all maps that have a key a with a

string value and a key b with a number value.

We infer from this definition that the type
{ a: string, b: number } is a strict
sub-type of the type { a: string }.

47/138



Map Types Relationships

What is the relation between the types?

type mapAB = { a: string, b: number };
type mapAC = { a: string, c: boolean };

48/138



Map Types Relationships

These two types are distinct:

{ a: "x", b: 2 } is in mapAB and not in
mapAC;

{ a: "x", c: true } is in mapAC and not
in mapAB.

Yet - they have a non-empty overlap:

{ a: "x", b: 2, c: true } is in both
mapAB and mapAC.

49/138



Map Types Relationships

In general - the intersection of the types mapAB
and mapAC is the type:

type mapABC = { a: string, b: number, c: boolean };

50/138



Map Types Relationships

The following types are disjoint:

type mapAS = { a: string };
type mapAN = { a: number };

because the constraints on the value of the key
a are incompatible.

51/138



Map Types Relationships

A good way to think about these relations is the
following:

52/138



Map Types Relationships

• Each key: type component of the map type
specification is a constraint on the values
that belong to the type.

53/138



Map Types Relationships

• The more constraints are specified in a type,
the less values belong to the type.

54/138



Map Types Relationships

• If you join all the constraints in two map
type specifications - you obtain a type
specification which denotes the intersection
of the types (as long as the constraints are
compatible).

55/138



Named Type Expressions

Type expressions can be given names. For
example, a map type expression can be named

using the interface construct:

interface <typeName> {
<key>: <type>;
...

}

56/138



Named Type Expressions

Other type constructs can be given a name
using the type construct of the type language:

type <typeName> = <type>;

57/138



Named Type Expressions

interface Student {
name: string;
cs: boolean;
age: number;

}

let s: Student = {
name: "Ben",
cs: true,
age: 32

};

58/138



Embedded Type Expressions

A type expression can have arbitrary type
expressions embedded recursively.

For example:

59/138



Embedded Type Expressions

interface Course {
courseName: string;
dept: string;
semester: number;
year: number;

};

interface RegisteredStudent {
name: string;
cs: boolean;
age: number;
courses: Course[];

};
60/138



Embedded Type Expressions

let rs: RegisteredStudent = {
name: "Ben",
cs: true,
age: 32,
courses: [{

courseName: "PPL",
dept: "CS",
semester: 2,
year: 2021

}]
};

61/138



Implicit Type Annotations

TypeScript can infer the type of variables based
on their usage. This is called an implicit type

annotation. For example:
let x = 5;
x = "a"; // => Type '"a"' is not assignable

// to type 'number'.

62/138



Type Queries

One can use the following notation to declare
that a variable should have the type of another

variable:
let p1 = { name: "Ben", age: 32 };
let p2: typeof p1 = { name:"nok" };
// => Property 'age' is missing in type
// '{ name: string; }' but required in
// type '{ name: string; age: number; }'.

63/138



Type Queries

The typeof x construct is called a type query
in TypeScript.

64/138



Type Queries

NOTE: The typeof x type query annotation is
different from the typeof operator we

discussed in the previous lecture - which is a
primitive runtime operator in JavaScript.

The TypeScript typeof is a type annotation - it
belongs to the Type Language - its value is a

type annotation.

The JavaScript typeof is a runtime primitive
operator. Its value is a string.

65/138



Recursive Types

Consider the case of defining a binary tree.
Using JSON, we would encode a binary tree as

follows:

let binTree = {
root: 1,
left: { root: 2 },
right: { root: 3 }

};

66/138



Recursive Types

The TypeScript type that corresponds to this
value would be:

{
root: number;
left: ?;
right: ?;

}

67/138



Recursive Types

We would need to specify that the left and
right keys expect to receive values of exactly
the same type. The only way to achieve such a

declaration is to use a recursive type
declaration – which requires us to give a name

to the type:
interface BinTree {

root: number;
left: BinTree;
right: BinTree;

}
68/138



Recursive Types

Let us try to create a value according to this
type specification:

interface BinTree {
root: number;
left: BinTree;
right: BinTree;

}

let tree: BinTree = {
root: 1,
left: { root: 2 },
right: { root: 3 }

} 69/138



Recursive Types

Why didn’t that work?

70/138



Recursive Types

There are multiple solutions to this problem.
One is to indicate that the properties left and
right are optional. This is indicated using the

? syntax as follows:
interface BinTree {

root: number;
left?: BinTree;
right?: BinTree;

}

71/138



Recursive Types

How different is the type annotation:
{ a?: string, b: number } from:

{ a: any, b: number }?

72/138



Generic Types

If we want to define a binary tree whose nodes
can have any type - but where all the nodes in
the tree must have the same type, we must

introduce type variables.

interface BinTree<T> {
root: T;
left?: BinTree<T>;
right?: BinTree<T>;

}

73/138



Generic Types

let tree: BinTree<number> = {
root: 1,
left: { root: 2 },
right: { root: 3 }

};

74/138



Generic Types

If we want to use a heterogeneous tree (a tree
that can contain nodes of different types), we

can use the special type called any:
let tree: BinTree<any> = {

root: 1,
left: {

root: true,
left: { root: "hello" }

}
};

75/138



Generic Types

The any type is compatible with all values - it
denotes the set of all possible values. Every

type that can be defined is actually a subset of
the any type. In itself, any is not useful - typing

a variable as any does not indicate any
constraint on the variable. But when used as a
type parameter in a complex type definition as

above, any becomes useful.

76/138



When are Generic Types Useful?

Generic types are compound type expressions
with type variables. Some of their components
are thus left as unspecified types. When are
such partially unspecified types useful?

77/138



When are Generic Types Useful?

• One reason to define a generic type is to
enable writing generic functions that
operate over all possible instantiations of
the generic type in the same manner.

78/138



When are Generic Types Useful?

const treeNodesNumber: <T>(t: BinTree<T>) => number =
t => t === undefined

? 0
: 1 + treeNodesNumber(t.left)

+ treeNodesNumber(t.right);

79/138



When are Generic Types Useful?

const treeDepth: <T>(t: BinTree<T>) => number =
t => t === undefined

? 0
: 1 + Math.max(treeDepth(t.left),

treeDepth(t.right));

80/138



When are Generic Types Useful?

• Another reason to use generic types is when
we need to define a set of value that is a
combination between two types that are
dependent of each other. For example,
consider the set of values which represent
an array of values together with the
minimum of the values that appear in the
array. Such data structure can be defined
for any type T which denotes a set of values
over which an order relation exists.

81/138



When are Generic Types Useful?

interface ArrayMin<T> {
min: T;
values: T[];

}

82/138



Generic Types Relationships

What is the type relationship (inclusion,
disjointness) between BinTree<T> and

BinTree<number>?

83/138



Generic Types Relationships

We first need to realize that the type expression
BinTree<T> cannot be used as the type of a

variable if it is not in the scope of a type
variable. That is, the expression:

let tree: BinTree<T> = ...
is not possible - because BinTree<T> cannot

be in itself the type of a variable.

A generic type can only appear in the context of
a generic function or in the context of a larger

generic type. 84/138



Generic Types Relationships

When the tree variable is instantiated to a
concrete (non-generic) type, then the type can

be used as any other type:

let tree: BinTree<string> = {
root: "Ben",
left: { root: "Itay" }

};

85/138



Generic Types Relationships

The relation between a generic type such as
BinTree<T> and a type such as

BinTree<string> is called instantiation.

86/138



Generic Types Relationships

Now, what is the relation between
BinTree<string> and BinTree<number>?

87/138



Generic Types Relationships

These two concrete types are instances of the
same generic type. Any value in

BinTree<string> has a property root of
type string. Any value in BinTree<number>
has a property root of type number. We infer

that these two types are disjoint.

88/138



Generic Types Relationships

Note that while these two types are disjoint, we
still can write generic functions that operate of
values of either type using the same code, as
we have seen in treeNodesNumber and

treeDepth.

89/138



Generic Types Relationships

If a type S is a subtype of a type T, then what is
the relation between the types BinTree<S>

and BinTree<T>?

90/138



Generic Types Relationships

Consider, for example,
T = { name: string } and

S = { name: string, age: number }.

91/138



Generic Types Relationships

To answer this question, we can read the
definition of BinTree<T> as a set of

constraints a value must meet to belong to the
type this type expression denotes:

• The value must be a map value.
• A property root must be present and have
a value of type T - which means that it must
have a property name of type string.

• Properties left/right can either be
absent or present and of type BinTree<T>.

92/138



Generic Types Relationships

Knowing that any value of type S is also a value
of type T (by definition of subtyping), we can
infer that any value in BinTree<S> meets all
the constraints to also belong to BinTree<T>.

93/138



Generic Types Relationships

In general, if S is a subtype of T, then
BinTree<S> is a subtype of BinTree<T>.

94/138



Function Types

One can type functions in TypeScript. Let us
introduce function types step by step:

95/138



Function Types

An untyped function in JavaScript has the
following form:

function add(x, y) {
return x + y;

}
const myAdd = function(x, y) {

return x + y;
};
const myFatAdd = (x, y) => x + y;

96/138



Function Types

We can first specify the types of the parameters
and the return type, in a way similar to the way
it would be done in Java. This applies both to
named functions and to anonymous functions.
function add(x: number, y: number): number {

return x + y;
}
const myAdd = function(x: number, y: number): number {

return x + y;
};
const myFatAdd = (x: number, y: number): number =>

x + y;

97/138



Function Types

Let us now write the full type of the function
out of the function value:

const myAdd: (x: number, y: number) => number =
(x, y) => x + y;

98/138



Function Types

The type expression:

(x: number, y: number) => number

is a function type. The values that this type
denotes are functions that map a pair of
numbers to a number - in other words,

functions whose domain is within
Number× Number and whose range is within

Number.

99/138



Function Types

This notation is called the function signature -
it combines the information on the type of the
parameters, their name and the type of the

returned value.

100/138



Function Types

Parameter names are just to help with
readability. We could have instead written:

const myAdd: (base: number, inc: number) => number =
(x: number, y: number): number => x + y;

101/138



Function Types

As long as the parameter types align, it’s
considered a valid type for the function,
regardless of the names you give the

parameters in the function type.

102/138



Function Types

The second part of the function type is the
return type. We make it clear which is the

return type by using a fat arrow (=>) between
the parameters and the return type. This is a
required part of the function type, so if the

function doesn’t return a value (which means
this is a function that just has a side-effect - no
return value), we use the special type void

instead of leaving it off.

103/138



Closures and Their Type

Consider the following function definition:
let z = 10;
const add: (x: number, y: number) => number =
(x, y) => x + y + z;

104/138



Closures and Their Type

The definition of add refers to the variable z,
which is defined outside the body of the

function. When this happens, we say that the
function captures the variable z - and the value
of the function add is called a closure. This is

because the function closes the captured
variables together with the function definition.

105/138



Closures and Their Type

Consider the following example that indicates
why this capture mechanism is part of the

definition of the closure:

106/138



Closures and Their Type

const adder = inc => x => x + inc;
const add5 = adder(5);
const add2 = adder(2);
console.log(add5(10)); // => 15
console.log(adder(3)(4)); // => 7

107/138



Closures and Their Type

Let us analyze the defintion of the function
adder - and refactor it step by step using types.

108/138



Closures and Their Type

adder is a function that accepts one parameter
inc. What should be the type of inc?

109/138



Closures and Their Type

We look at where inc is used in the body of the
function adder and find the expression x +
inc. This expression applies to numbers - we

conclude that inc should be a number.
The signature of the function adder should

therefore look like:

(inc: number) => ?

110/138



Closures and Their Type

What is the type of the value returned by
adder?

111/138



Closures and Their Type

The returned value is x => x + inc. This
expression is a function - which receives x as a

parameter and returns x + inc.
The type of this returned function is thus:

(x: number) => number

112/138



Closures and Their Type

Putting parameter and return value together,
we obtain the type of the function adder as

this expression:
(inc: number) => (x: number) => number

113/138



Closures and Their Type

Now consider the capturing of the parameter
inc when the function adder is invoked - in

the expression:

const add5 = adder(5);

The type of add5 is

(x: number) => number

114/138



Closures and Their Type

adder(5) returns a function of one parameter.
When it is invoked, this function adds 5 to its

parameter. How does it know to add 5
specifically?

115/138



Closures and Their Type

This is because when the return function is
computed, it captures the current value of the

parameter inc. This happens in the
computation of this expression:

116/138



Closures and Their Type

Compute adder(5):

1. Bind parameter inc to 5
2. Compute the value x => x + inc ⇐ This

is when variable inc is captured

117/138



Closures and Their Type

The key point is that when the value of the
function is computed, inc is bound to the value
5. Later, when the value add5 is used, inc is
not bound anymore to any value - because the

scope of its definition has been exited.

118/138



Closures and Their Type

If we look back at the type of the closures
returned when we compute adder(5) - we

obtain:

(x: number) => number

Note that the closure does not indicate that it
depends on another variable (inc) - because
this is not part of the signature of the closure -

it is an internal aspect of the closure.

119/138



Type Compatibility

As part of the type checking performed by the
TypeScript compiler, one must determine

whether two type expressions are compatible.
This compatibility checking occurs in the

following context for example:

120/138



Type Compatibility

• Assume we know the type of a variable a to
be of type expression <type_a>.

• We now compile the following expression:
let b: <type_b> = a;.
At this point, the TypeScript compiler must
determine whether <type_a> and
<type_b> are compatible.

121/138



Type Compatibility

• Similarly, assume we know the type of a
function f to be
(x: <type_x>) => <type_y>.

• We now compile the following expression:
let z: <type_z> = v; f(z);.
At this point, the TypeScript compiler must
determine whether <type_x> and
<type_z> are compatible.

122/138



Type Compatibility

Type compatibility is not symmetric - T1 is
compatible with T2 means we can substitute a
value of type T2 with a value of type T1 and
still obtain valid expressions. The reverse may

not be true.

123/138



Type Compatibility

In general, think of type expressions as
expressing constraints on the values that

belong to the type. When a type expression T1
expresses more constraints than T2, then it
means the type expression T1 denotes less
values than T2. It also means all the values in

T1 meet the constraints specified by T2.

124/138



Type Compatibility

In short: T1 is a subtype of T2 if all the values
in T1 satisfy the constraints of T2.

This means we can do this:

let t1: T1 = ...
let t2: T2 = t1;

125/138



Type Compatibility

Compatibility Rules:

• Primitive type expressions are compatible
when they are the same (number is
compatible with number, but not with
string).

• Primitive type expressions are not
compatible with any compound type
expressions.

126/138



Type Compatibility

Compatibility Rules:

• Arrays are only compatible with arrays,
maps with maps, functions with functions.

• Two array expressions T1[] and T2[] are
compatible when T1 and T2 are compatible.

127/138



Map Type Compatibility: Structural Typing

The basic rule of TypeScript for map
compatibility is:

x is compatible with y if y has at least the
same members as x.

128/138



Map Type Compatibility: Structural Typing

For example:
interface Named {

name: string;
}

let x: Named = { name: "Ben" };
let y = { name: "Itay", location: "London" };
x = y;

129/138



Map Type Compatibility: Structural Typing

This method of checking type compatibility is
called structural typing. Structural typing is a
way of relating types based solely on their
members. This is in contrast with nominal
typing which we know from Java and C++.

130/138



Map Type Compatibility: Structural Typing

Consider the following code:

interface Named {
name: string;

}

interface Person {
name: string;
age: number;

}

131/138



Map Type Compatibility: Structural Typing

Under structural typing, Person is a subtype of
Named - even though this is not declared by the
programmer; this subtyping relation is inferred

by the compiler.

132/138



Map Type Compatibility: Structural Typing

In nominally-typed languages like Java, the
equivalent code would be an error because the
Person type does not explicitly describe itself
as being a subtype or an implementor of the
Named interface - the programmer does not
define explicitly relations between the types.

133/138



Function Types Compatibility: Comparing the Types of Functions

While comparing primitive types and object
types is relatively straightforward, the question

of what kinds of functions should be
considered compatible is a bit more involved.
Let’s start with a basic example of two functions

that differ only in their parameter lists:

let f = (a: number, t: string) => 0;
let g = (b: number, s: string) => 0;
g = f; // OK

134/138



Function Types Compatibility: Comparing the Types of Functions

To check if f is assignable to g, we first look at
the parameter list. Each parameter in f must
have a corresponding parameter in g with a
compatible type. Note that the names of the
parameters are not considered, only their

types. In this case, every parameter of f has a
corresponding compatible parameter with
identical type in g, so the assignment is

allowed.

135/138



Function Types Compatibility: Comparing the Types of Functions

We ignore here the complexity introduced by
optional arguments and differing number of

arguments - we will simplify by stating that two
function parameter lists are compatible if they

have the same length and the types. The
comparison of the type of each parameter,

however, is surprising.

136/138



Function Types Compatibility: Comparing the Types of Functions

Let’s look at how return types are treated, using
two functions that differ only by their return

type:
let f = () => ({ name: "Ben" });
let g = () => ({ name: "Ben", cs: true });
f = g; // OK
g = f; // Type '() => { name: string; }' is

// not assignable to type
// '() => { name: string; cs: boolean; }'.

137/138



Function Types Compatibility: Comparing the Types of Functions

The type system enforces that:

the source function’s return type be a subtype
of the target type’s return type.

138/138


