
Principles of Programming Languages
Type Inference

1/142

Type Inference

After having described the process of type
checking, we now address a more ambitious
task in type analysis: type inference. In this

task, we not only verify that a program is safe,
we also allow the programmer to leave some
(or even all) the type annotations empty - and
attempt to guess their value from the structure

of the program.

2/142

Type Inference

If we can infer such a consistent set of type
annotations for the program, we conclude that

the program is type safe and provide the
annotations. Otherwise, we point to the

inconsistency.

3/142

Type Inference

To enable this process, we consider all the type
annotations in the L5 language as optional.
This process is quite similar to the strategy
adopted in TypeScript which we reviewed in

Chapter 1 (gradual typing).

4/142

Type Inference

We first investigate how we can perform the
process of type inference manually, and then
present an algorithm which automates this
process, relying on a critical operation on

substitutions called unification.

5/142

Type Inference

The operation of unification is a fundamental
tool in the semantics of programming

languages, and we will further expand its use in
Chapter 5 (on Logic Programming).

6/142

Type Inference using Type Equations

The algorithm we present extends the type
checker method by introducing type equations
which are constructed for every sub-expression

of the expression to be typed.

7/142

Type Inference using Type Equations

A solution to the equations assigns types to
every sub-expression. The type

checking/inference procedure turns into a type
equation solver.

8/142

Type Inference using Type Equations

Let us first present informally how we would
proceed manually to infer the type of some

programs.

9/142

Type Inference: Example 1

Let us consider an example: we want to type
the following expression:

((lambda (x) (+ x 3)) 5)

10/142

Type Inference: Example 1

We consider this equation as an AST where all
variable declarations have optional type

annotations which are not provided. We view
this expression as if it had been provided as

follows in the L5 syntax with full type
annotations:

((lambda ((x : Tx)) : T1
(+ x 3))

5)

11/142

Type Inference: Example 1

Note that in this notation, type variables are
used to indicate our lack of knowledge of the
actual types. Our objective is to infer the value

of the type variables Tx and T1.

12/142

Type Inference: Example 1

In addition, we also want to type check the
whole expression and verify that every node in
the AST can be assigned a consistent type.

Therefore, we also introduce type variables for
the nodes in the expression:

• Tapp for the overall application expression
• Tproc for the lambda expression
• T+ for the + application expression

13/142

Type Inference: Example 1

Given these 5 type variables: Tx, T1, Tapp, Tproc
and T+, we derive type constraints (equations)

by inspecting the syntactic type of each
expression and applying typing rules to each

node:

1. Tproc = [Tx → T1]
2. T1 = T+

14/142

Type Inference: Example 1

These two constraints are derived from the
procedure-typing rule which we introduced in

the previous lecture:

15/142

Type Inference: Example 1

Typing rule Procedure:

For every: type environment _Tenv,
variables _x1, ..., _xn, n >= 0
expressions _e1, ..., _em, m >= 1, and
type expressions _S1, ...,_Sn, _U1, ...,_Um :

Procedure with parameters (n > 0):
If _TEnv o {_x1:_S1, ..., _xn:_Sn }

|- _ei:_Ui for all i = 1..m ,
Then _TEnv |- (lambda (_x1 ... _xn) _e1 ... _em):

[_S1 * ... * _Sn -> _Um]

Parameter-less Procedure (n = 0):
If _TEnv |- _ei:_Ui for all i=1..m,
Then _TEnv |- (lambda () _e1 ... _em) : [Empty -> _Um]

16/142

Type Inference: Example 1

In our case, we consider the procedure
(lambda ((x : Tx)) : T1 (+ x 3))

and we have named the type of the application
(+ x 3) T+.

17/142

Type Inference: Example 1

The procedure typing rule mandates that:

• The type of the procedure be of the form
[T1 × . . .× Tn → T] where Ti are the types
of the formal parameters and T the return
type.

• The type of all the expressions in the body
be checked.

• The return type of the procedure be the
same as the type of the last expression in
the body.

18/142

Type Inference: Example 1

In general, we derive 2 constraints from each
procedure node in the AST:

• One for the type of the procedure as a
whole (#1 above)

• One for the return type of the procedure (#2
above)

19/142

Type Inference: Example 1

Observe that we did not explicitly take into
account the TEnv extension specified in the rule
when we derived type equations. Instead, we

assigned a type variable to the variable
declaration (Tx for the variable x in our case) -
and in the continuation of the analysis, we

assume that all occurrences of x have type Tx.

20/142

Type Inference: Example 1

This assumption relies on the implicit
assumption that all the bound variables in the
program have been renamed to distinct names

to avoid confusion.

21/142

Type Inference: Example 1

We then consider the application expression
and derive two more constraints:

3. Tapp = T1
4. Tx = Number

22/142

Type Inference: Example 1

We derive these constraints from the
application typing rule:

23/142

Type Inference: Example 1

Typing rule Application:

For every: type environment _TEnv,
expressions _f, _e1, ..., _en, n >= 0 , and
type expressions _S1, ..., _Sn, _S:

Procedure with parameters (n > 0):
If _TEnv |- _f : [_S1*...*_Sn -> _S],

_TEnv |- _e1 : _S1, ..., _TEnv |- _en : _Sn
Then _TEnv |- (_f _e1 ... _en) : _S

Parameter-less Procedure (n = 0):
If _TEnv |- _f : [Empty -> _S]
Then _TEnv |- (_f) : _S

24/142

Type Inference: Example 1

In our case, we apply a procedure of type
Tproc = [Tx → T1] to the parameter 5 of type

Number.

25/142

Type Inference: Example 1

The rule mandates that:

• The type of the application be the same
type as the return type of the procedure
(f e1 ...) = S

• The type of the arguments be the same as
the type of the formal parameters
(ei = Si)

26/142

Type Inference: Example 1

In general, typing an application expression
creates n+ 1 equations - one for each formal

parameter ei and one for the type of the whole
application.

27/142

Type Inference: Example 1

Finally, we consider the primitive application
expression (+ x 3) and derive three

constraints:

5. T+ = Number
6. Tx = Number
7. Tnum3 = Number

28/142

Type Inference: Example 1

In general, we derive n+ 1 type equations for
every primitive application analysis: one for

each of the n parameters (our primitives so far
have either 1 or 2 parameters) and one for the

return type of the primitive application.

29/142

Type Inference: Example 1

Observe how primitive expressions produce
extremely rich constraints - they are extremely
informative. This is because primitives in our
language are strongly typed - they expect a

single type for their parameter and produce a
single type.

30/142

Type Inference: Example 1

Primitives in JavaScript are much less
informative, because they accept variables of
many types and can return many types as well.

31/142

Type Inference: Example 1

We then solve this system of equations by
systematic inspection and substitution across
all equations when we find the value of a type

variable.

32/142

Type Inference: Example 1

The equations we derived are:

1. Tproc = [Tx → T1]
2. T1 = T+
3. Tapp = T1
4. Tx = Number
5. T+ = Number
6. Tx = Number
7. Tnum3 = Number

33/142

Type Inference: Example 1

• By substituting T+ we find that
T1 = Number.

• By substituting Tx and T1 we find that
Tproc = [Number → Number].

• By substituting T1 we find that
Tapp = Number.

34/142

Type Inference: Example 1

We have thus derived the type of the overall
expression. In addition, we have inferred the
type of the variables Tx and T1 and can thus

provide a fully annotated version of the
program:

((lambda ((x : Number)) : Number
(+ x 3))

5)

35/142

Type Inference: Example 2

Let us type the following expression - which
computes the derivative of the function g with

resolution dx:

(lambda (g dx)
(lambda (x)

(/ (- (g (+ x dx)) (g x))
dx)))

36/142

Type Inference: Example 2

We consider this equation as an AST where all
variable declarations have optional type

annotations which are not provided. We view
this expression as if it had been provided as

follows:

(lambda ((g : Tg) (dx : Tdx)) : T1
(lambda ((x : Tx)) : T2

(/ (- (g (+ x dx)) (g x))
dx)))

37/142

Type Inference: Example 2

Our objective is to infer the value of the type
variables Tg, Tdx, T1, Tx and T2.

38/142

Type Inference: Example 2

In addition, we also want to type check the
whole expression and verify that every node in
the AST can be assigned a consistent type.

39/142

Type Inference: Example 2

Therefore, we also introduce type variables for
the nodes in the expression:

1. Tproc1 for the
lambda in line 1

2. Tproc2 for the
lambda in line 2

3. T/ for the /
application

4. T- for the -
application

5. Tg1 for the 1st g
application

6. T+ for the +
application

7. Tg2 for the 2nd g
application

40/142

Type Inference: Example 2

This is how the AST looks with type variables in
parentheses near relevant nodes: Mermaid AST

41/142

https://mermaid.ink/img/eyJjb2RlIjoiZ3JhcGggVERcbiAgICBUcHJvYzFbXCJQcm9jRXhwIChUcHJvYzEpXCJdXG4gICAgVHByb2MyW1wiUHJvY0V4cCAoVHByb2MyKVwiXVxuICAgIFZEMVtcIlZhckRlY2xcIl1cbiAgICBWRDJbXCJWYXJEZWNsXCJdXG4gICAgVkQzW1wiVmFyRGVjbFwiXVxuICAgIEFwcEV4cDFbXCJBcHBFeHAgKFQvKVwiXVxuICAgIEFwcEV4cDJbXCJBcHBFeHAgKFQtKVwiXVxuICAgIEFwcEV4cDNbXCJBcHBFeHAgKFRnMSlcIl1cbiAgICBBcHBFeHA0W1wiQXBwRXhwIChUZzIpXCJdXG4gICAgQXBwRXhwNVtcIkFwcEV4cCAoVCspXCJdXG4gICAgVmFyUmVmMVtcIlZhclJlZlwiXVxuICAgIFZhclJlZjJbXCJWYXJSZWZcIl1cbiAgICBWYXJSZWYzW1wiVmFyUmVmXCJdXG4gICAgQ29sb24xW1wiOlwiXVxuICAgIENvbG9uMltcIjpcIl1cbiAgICBDb2xvbjNbXCI6XCJdXG4gICAgQ29sb240W1wiOlwiXVxuICAgIENvbG9uNVtcIjpcIl1cbiAgICBDb2xvbjZbXCI6XCJdXG4gICAgQ29sb243W1wiOlwiXVxuICAgIENvbG9uOFtcIjpcIl1cblxuICAgIFRwcm9jMSAtLT58XCJhcmdzXCJ8IENvbG9uMVxuICAgIENvbG9uMSAtLT4gVkQxIC0tPnxcInZhclwifCBnXG4gICAgVkQxIC0tPnxcInRleHBcInwgVGdcbiAgICBDb2xvbjEgLS0-IFZEMiAtLT58XCJ2YXJcInwgZHhcbiAgICBWRDIgLS0-fFwidGV4cFwifCBUZHhcblxuICAgIFRwcm9jMSAtLT58XCJib2R5XCJ8IENvbG9uMlxuICAgIFRwcm9jMSAtLT58XCJyZXR1cm5URVwifCBUMVxuICAgIENvbG9uMiAtLT4gVHByb2MyXG5cbiAgICBUcHJvYzIgLS0-fFwiYXJnc1wifCBDb2xvbjNcbiAgICBDb2xvbjMgLS0-IFZEMyAtLT58XCJ2YXJcInwgeFxuICAgIFZEMyAtLT58XCJ0ZXhwXCJ8IFR4XG5cbiAgICBUcHJvYzIgLS0-fFwiYm9keVwifCBDb2xvbjRcbiAgICBUcHJvYzIgLS0-fFwicmV0dXJuVEVcInwgVDJcbiAgICBDb2xvbjQgLS0-IEFwcEV4cDFcbiAgICBBcHBFeHAxIC0tPnxcInJhdG9yXCJ8IC9cbiAgICBBcHBFeHAxIC0tPnxcInJhbmRzXCJ8IENvbG9uNVxuICAgIENvbG9uNSAtLT4gQXBwRXhwMlxuICAgIENvbG9uNSAtLT4gVmFyUmVmMSAtLT58XCJ2YXJcInwgZHgyW1wiZHhcIl1cblxuICAgIEFwcEV4cDIgLS0-fFwicmF0b3JcInwgLVxuICAgIEFwcEV4cDIgLS0-fFwicmFuZHNcInwgQ29sb242XG4gICAgQ29sb242IC0tPiBBcHBFeHAzXG4gICAgQ29sb242IC0tPiBBcHBFeHA0XG4gICAgQXBwRXhwMyAtLT58XCJyYXRvclwifCBWYXJSZWYyIC0tPnxcInZhclwifCBnMltcImdcIl1cbiAgICBBcHBFeHAzIC0tPnxcInJhbmRzXCJ8IENvbG9uN1xuICAgIENvbG9uNyAtLT4gQXBwRXhwNVxuICAgIEFwcEV4cDUgLS0-fFwicmF0b3JcInwgK1xuICAgIEFwcEV4cDUgLS0-fFwicmFuZHNcInwgQ29sb244XG4gICAgQ29sb244IC0tPiBWYXJSZWY0W1wiVmFyUmVmXCJdXG4gICAgVmFyUmVmNCAtLT58XCJ2YXJcInwgeDJbXCJ4XCJdXG4gICAgQ29sb244IC0tPiBWYXJSZWY1W1wiVmFyUmVmXCJdXG4gICAgVmFyUmVmNSAtLT58XCJ2YXJcInwgZHgzW1wiZHhcIl1cblxuICAgIEFwcEV4cDQgLS0-fFwicmF0b3JcInwgZzNbXCJnXCJdXG4gICAgQXBwRXhwNCAtLT58XCJyYW5kc1wifCBDb2xvbjlbXCI6XCJdXG4gICAgQ29sb245IC0tPiBWYXJSZWYzW1wiVmFyUmVmXCJdXG4gICAgVmFyUmVmMyAtLT58XCJ2YXJcInwgeDNbXCJ4XCJdIiwibWVybWFpZCI6eyJ0aGVtZSI6ImRlZmF1bHQifSwidXBkYXRlRWRpdG9yIjpmYWxzZX0

Type Inference: Example 2

Given these 12 type variables: Tg, Tdx, T1, Tx, T2
and Tproc1, Tproc2, T/, T-, Tg1, T+, Tg2, we derive
type constraints (equations) by inspecting the
syntactic type of each expression and applying

typing rules to each node:

42/142

Type Inference: Example 2

• Tproc1 = [Tg × Tdx → T1]
• T1 = Tproc2
• Tproc2 = [Tx → T2]
• T2 = T/
• T/ = Number
• T- = Number
• Tdx = Number
• T- = Number
• Tg1 = Number
• Tg2 = Number

• Tg = [T+ → Tg1]
• T+ = T+
• T+ = Number
• Tx = Number
• Tdx = Number
• Tg = [Tx → Tg2]
• Tx = Tx

43/142

Type Inference: Example 2

We then solve this system of equations by
systematic inspection and substitution across
all equations when we find the value of a type

variable.

44/142

Type Inference: Example 2

By substituting Tg2 and Tx with their values, we
find:

Tg = [Number → Number]

45/142

Type Inference: Example 2

By substituting T/ - we get T2 = Number, then
Tproc2 = [Number → Number], then

T1 = [Number → Number] and eventually:

Tproc1 = [[Number → Number]× Number
→ [Number → Number]]

46/142

Type Inference: Example 2

This is the expected type for the derivative
function, which given a numeric function and a
resolution, returns a new numeric function.

47/142

Type Inference: Example 2

In addition, we can provide the fully annotated
version of the program:

(lambda ((g : (number -> number)) (dx : number)) : (number -> number)
(lambda ((x : number)) : number

(/ (- (g (+ x dx)) (g x))
dx)))

48/142

Type Inference: Example 3

Let us type this expression:

(let ((x 1))
(lambda (f y)

(f (+ x y))))

49/142

Type Inference: Example 3

We consider this equation as an AST where all
variable declarations have optional type

annotations which are not provided. We view
this expression as if it had been provided as

follows:

(let (((x : Tx) 1))
(lambda ((f : Tf) (y : Ty)) : Tres
(f (+ x y))))

50/142

Type Inference: Example 3

Our objective is to infer the value of the type
variables Tx, Tf, Ty and Tres. In addition, we
also want to type check the whole expression
and verify that every node in the AST can be

assigned a consistent type.

51/142

Type Inference: Example 3

Therefore, we also introduce type variables for
the nodes in the expression:

• Tlet for the whole let expression
• Tproc for the lambda expression
• Tapp for the f application expression
• T+ for the + application expression

52/142

Type Inference: Example 3

Given these 8 type variables: Tx, Tf, Ty, Tres,
Tlet, Tproc, Tapp, T+, we derive type constraints
(equations) by inspecting the syntactic type of
each expression and applying typing rules to

each node:

1. Tx = Number
2. Tlet = Tproc

53/142

Type Inference: Example 3

We use here the let-typing rule, which
combines the type constraints of procedure

definition and application:
Typing rule Let:
For every: type environment _TEnv,

variables _x1, ..., _xn, n >= 0
expressions _e1, ..., _em, m >= 1, and
type expressions _S1, ...,_Sn, _U1, ...,_Um :

If _TEnv o {_x1 : _S1, ..., _xn : _Sn }
|- _bi : _Ui for all i = 1..m
_TEnv |- _ei : _Si for all i = 1..n

Then _TEnv |-
(let ((_x1 _e1) ... (_xn _en)) _b1 ... _bm) : _Um

54/142

Type Inference: Example 3

In general, applying the let-typing rule yields
n+ 1 constraints, one for each binding in the
let, and one for the type of the body being

equal to the type of the whole let-expression.

55/142

Type Inference: Example 3

3. Tres = Tapp
4. Tproc = [Tf × Ty → Tapp]
5. Tf = [T+ → Tapp]
6. Tx = Number
7. Ty = Number
8. T+ = Number

56/142

Type Inference: Example 3

We then solve this system of equations by
systematic inspection and substitution across
all equations when we find the value of a type

variable.

57/142

Type Inference: Example 3

By substituting T+ with its value, we find:

Tf = [Number → Tapp]
Then, by substituting Tf and Ty by their value:

Tproc = [[Number → Tapp]× Number → Tapp]

58/142

Type Inference: Example 3

We eventually infer that

Tlet = [[Number → Tapp]× Number → Tapp]

59/142

Type Inference: Example 3

We also have inferred the type of all the
variables which appear in the annotations and

can fill the annotations as follows:
(let (((x : number) 1))

(lambda ((f : (number -> Tapp)) (y : number)) : Tapp
(f (+ x y))))

60/142

Type Inference: Example 3

We observe that the resulting type for Tlet
includes type variables. This is because this
expression is polymorphic - we can compute
this program for any type Tapp and ensure that

no typing error will be met.

61/142

Type Inference: Example 4

We want to type the procedure
(lambda (f x) (f x x))

using type equations.

62/142

Type Inference: Example 4

We consider this equation as an AST where all
variable declarations have optional type

annotations which are not provided. We view
this expression as if it had been provided as

follows:
(lambda ((f : Tf) (x : Tx)) : Tres (f x x))

63/142

Type Inference: Example 4

Our objective is to infer the value of the type
variables Tf and Tx. In addition, we also want
to type check the whole expression and verify
that every node in the AST can be assigned a

consistent type.

64/142

Type Inference: Example 4

Therefore, we also introduce type variables for
the application node (f x x) (Tapp) and for

the overall procedure
(lambda (f x) (f x x)) (Tproc).

65/142

Type Inference: Example 4

Given these 4 type variables: Tf, Tx, Tapp, Tproc,
we derive type constraints (equations) by

inspecting the syntactic type of each expression
and applying typing rules to each node:

1. Tf = [Tx × Tx → Tapp]
2. Tproc = [Tf × Tx → Tres]
3. Tres = Tapp

66/142

Type Inference: Example 4

Crucially, the same variables appear in the two
equations. Our objective is to find a solution
which assigns a value to the variables to make
the whole system consistent. Alternatively, if

there is a problem in the type of the
expressions, we must detect the conflict.

67/142

Type Inference: Example 4

Our solution consists of inspecting each
equation, and to try to make the two sides of
the equation equal by applying consistent
substitution on both sides (this approach is
quite similar to the way we solve algebraic

equations).

68/142

Type Inference: Example 4

In our case, the solution is provided by
replacing Tf by its value in the right-hand side

of the second equation, yielding:

Tproc = [[Tx × Tx → Tapp]× Tx → Tapp]

69/142

Type Inference: Example 4

In addition, we have inferred the required types
for all variables in the expression, and can

produce the fully annotated version:
(lambda ((f : (Tx * Tx -> Tapp)) (x : Tx))

: ((Tx * Tx -> Tapp) * Tx -> Tapp)
(f x x))

70/142

Type Inference: Example 4

We observe that the resulting expression still
contains type variables (Tx and Tapp). This is OK

- it means the procedure we have typed is
polymorphic - it can work on any type pairs (Tx,
Tapp) and still be executed without leading to a

typing error.

71/142

Type Inference: Example 5

Let us now consider a case where type
inference fails:

(lambda (x) (x x))

72/142

Type Inference: Example 5

The annotated AST is:

(lambda ((x : Tx)) : T1 (x x))

73/142

Type Inference: Example 5

The additional type variables are:

• Tproc for the whole lambda expression
• Tapp for the application expression

74/142

Type Inference: Example 5

We derive type equations:

1. Tproc = [Tx → T1]
2. T1 = Tapp
3. Tx = [Tx → Tapp]
4. Tx = Tx

75/142

Type Inference: Example 5

There is no solution to this system of equations
- because we cannot solve the constraint:

Tx = [Tx → Tapp]

76/142

Type Inference Algorithm using Type Equations

Let us now present the algorithm which
performs type inference by constructing and

solving type equations.

77/142

Type Inference Algorithm using Type Equations

Type equation solvers use the unification
algorithm for unifying type expressions and
producing a consistent substitution of type
variables which makes all equations equal.

78/142

Type Inference Algorithm using Type Equations

The method has four stages:

1. Rename bound variables in the expression.
2. Assign type variables to all sub-expressions.
3. Construct type equations.
4. Solve the equations.

79/142

Type Substitutions and Unifiers

In order to describe the process of type
equations more formal, we introduce the

definition of type substitutions and unifiers.
The notions of substitutions and renaming we
will use are identical to those we introduced
when describing the operational semantics of
the language. The notion of unifier builds on

those.

80/142

Type Substitutions and Unifiers

Definition: Type Substitution
A type-substitution s is a mapping from a
finite set of type variables to a finite set of
type expressions, such that s(T) does not
include T. A type-binding is a pair ⟨T; s(T)⟩.

81/142

Type Substitutions and Unifiers

Substitutions are written using set notation:

{T1 = Number, T2 = [[Number → T3] → T3]}
This substitution:

{T1 = Number, T2 = [[Number → T3] → T2]}
is an illegal substitution because T2 occurs in

s(T2).

82/142

Type Substitutions and Unifiers

Definition: Substitution Application
The application of a type-substitution s to a
type expression T, denoted T ◦ s (or just Ts),
consistently replaces all occurrences of type
variables Ti in T by their mapped type
expressions s(Ti). The replacement is
simultaneous.

83/142

Type Substitutions and Unifiers

For example:
[[T1 → T2] → T2] ◦ {T1 = Boolean, T2 = [T3 → T3]}

= [[Boolean → [T3 → T3]] → [T3 → T3]]

84/142

Type Substitutions and Unifiers

Definition: Type Instance, More General Relation

We say that a type expression T′ is an instance
of a type expression T, if there is a type
substitution s such that T ◦ s = T′.

T is more general than T′, if T′ is an instance
of T.

85/142

Type Substitutions and Unifiers

The following type expressions are instances of
[T → T]:

• [Number → Number] = [T → T] ◦ {T = Number}
• [Symbol → Symbol] = [T → T] ◦ {T = Symbol}
• [[Number → Number] → [Number → Number]] =
[T → T] ◦ {T = [Number → Number]}

• [[Number → T1] → [Number → T1]] =
[T → T] ◦ {T = [Number → T1]}

86/142

Type Substitutions and Unifiers

Definition: Combination (composition) of Type Substitutions
The combination of type-substitutions s and
s′, denoted s ◦ s′, is an operation that results
in a type-substitution, or fails.

87/142

Type Substitutions and Unifiers

Definition: Combination (composition) of Type Substitutions
It is defined by:

1. s′ is applied to the type-expressions of s,
i.e., for every variable T′ for which s′(T′) is
defined, occurrences of T′ in type
expressions in s are replaced by s′(T′).

2. A variable T in s′, for which s(T) is defined,
is removed from the domain of s′, i.e., s′(T)
is not defined on it anymore.

88/142

Type Substitutions and Unifiers

Definition: Combination (composition) of Type Substitutions
3. The modified s′ is added to s.
4. Identity bindings, i.e., s(T) = T, are removed.
5. If for some variable, (s ◦ s′)(T) includes T,

the combination fails.

89/142

Type Substitutions and Unifiers

For example:
{T1 = Number, T2 = [[Number → T3] → T3]} ◦

{T3 = Boolean, T1 = [T2 → T2]}
=

{T1 = Number,
T2 = [[Number → Boolean] → Boolean] ,
T3 = Boolean}

90/142

Type Substitutions and Unifiers

Definition: Renaming of Type Variables
Renaming is the operation of consistent
renaming of type variables within a type
expression, by new type symbols, that do not
occur in the type expression.

91/142

Type Substitutions and Unifiers

Renamed type expressions are equivalent:

[[T1 → T2]× T1 → T2] ∼ [[S1 → T2]× S1 → T2]
[[T1 → T2]× T1 → T2] ∼ [[S1 → S2]× S1 → S2]

92/142

Type Substitutions and Unifiers

The variables in the substituting expressions
should be new. For example, the following

renamings of [[T1 → T2]× T1 → T2] are illegal:

• [[T1 → T2]× S2 → T2] – T1 is not
consistently replaced, T1 and S2 are not
kept together.

• [[T2 → T2]× T2 → T2] – T2 is reused to
replace T1

93/142

Type Substitutions and Unifiers

Definition: Unification of Type Expressions
Unification is an operation that makes type
expressions identical by application of a type
substitution to both expressions. When such a
substitution can be found, it is called a unifier
of the two type expressions.

94/142

Type Substitutions and Unifiers

For example:
[S × [Number → S] → S] ◦{

S = Pair(T1), T2 =
[
Number → Pair(T1)

]
, T3 = Pair(T1)

}
=[

Pair(T1)× T2 → T3
]
◦{

S = Pair(T1), T2 =
[
Number → Pair(T1)

]
, T3 = Pair(T1)

}
=[

Pair(T1)×
[
Number → Pair(T1)

]
→ Pair(T1)

]

95/142

Type Substitutions and Unifiers

Therefore,{
S = Pair(T1), T2 =

[
Number → Pair(T1)

]
, T3 = Pair(T1)

}
is a unifier for these type expressions.

96/142

Type Substitutions and Unifiers

Definition: Unifier of Type Expressions
A unifier of type expressions T1, T2 is a type
substitution s such that T1 ◦ s = T2 ◦ s.
The type expressions should not include
common type variables! (Apply renaming, if
needed.)

97/142

Type Substitutions and Unifiers

For example, consider the type expressions
[S × [Number → S1] → S] and[
Pair(T1)× [T1 → T1] → T2

]
.

These expressions are unifiable by:

{S = Pair(Number),
T1 = Number,
S1 = Number,
T2 = Pair(Number)}

98/142

Type Substitutions and Unifiers

For example, consider the type expressions
[S × [Number → S] → S] and[
Pair(T1)× [T1 → T1] → T2

]
.

They are not unifiable because we would need
to resolve (find a substitution which leads to

the equality):

S = Pair(T1) and S = T2 and
[Number → S] = [T1 → T1], hence S = T1,

which is not compatible with T1 = Pair(T1)
99/142

Type Substitutions and Unifiers

Definition: Most General Unifier (mgu)
Unifiable type expressions can be unified by
multiple unifiers.
For example, the type expressions [S × S → S]
and

[
Pair(T1)× T2 → T2

]
are unifiable by

the unifiers:
•
{
S = Pair(T1), T2 = Pair(T1)

}
•
{
S = Pair(Number), T2 = Pair(Number)

}
•
{
S = Pair(Boolean), T2 = Pair(Boolean)

}
• etc.

100/142

Type Substitutions and Unifiers

Definition: Most General Unifier (mgu)
The first unifier is the most general unifier
(mgu), since it substitutes only the necessary
type variables, without making additional
assumptions about the replaced terms.

101/142

Type Substitutions and Unifiers

Definition: Most General Unifier (mgu)
All other unifiers are obtained from it by
application of additional substitutions. The
most general unifier is unique, up to
consistent renaming. It is called the most
general unifier (mgu) of the two type
expressions.

102/142

Type Substitutions and Unifiers

We will use in the type inference algorithm the
function unify(TE1, TE2) which returns the
mgu of TE1 and TE2 if it can be found and

false otherwise (indicating the two expressions
cannot be unified).

103/142

Type Inference With Equations Step by Step

With the unification tool at our disposal, let us
run the full details of the type inference

algorithm step by step:

We want to type the following expression:

(lambda (f g)
(lambda (x)

(f (+ x (g 3)))))

104/142

Type Inference With Equations Step by Step

We consider it with its type annotations:

(lambda ((f : Tf) (g : Tg)) : T1
(lambda ((x : Tx)) : T2

(f (+ x (g 3)))))

105/142

Type Inference With Equations Step by Step

Stage I: Renaming:
None needed because all declared variables

already have distinct names.

106/142

Type Inference With Equations Step by Step

Stage II: Assign type variables: Every sub
expression is assigned a type variable:

107/142

Type Inference With Equations Step by Step

Expression Variable
(lambda (f g) ...) T0
(lambda (x) ...) T1
(f (+ x (g 3))) T2
f Tf
(+ x (g 3)) T3
+ T+
x Tx
(g 3) T4
g Tg
3 Tnum3

108/142

Type Inference With Equations Step by Step

Stage III: Construct type equations:
The typing rules of algorithm Type-derivation

turn into type equations: The rules are:

1. Number, Boolean, Symbol,
Primitive-procedures: Construct equations
using their types. For example, for the
number 3: Tnum3 = Number, and for the
binary primitive procedure +:
T+ = [Number× Number → Number]

109/142

Type Inference With Equations Step by Step

2. Procedure (lambda expressions):

110/142

Type Inference With Equations Step by Step

Typing rule Procedure:

For every: type environment _TEnv,
variables _x1, ..., _xn, n >= 0
expressions _e1, ..., _em, m >= 1, and
type expressions _S1, ...,_Sn, _U1, ...,_Um :

Procedure with parameters (n > 0):
If _TEnv o {_x1:_S1, ..., _xn:_Sn }

|- _ei:_Ui for all i = 1..m ,
Then _TEnv |- (lambda (_x1 ... _xn) _e1 ... _em):

[_S1 * ... * _Sn -> _Um]

Parameter-less Procedure (n = 0):
If _TEnv |- _ei:_Ui for all i=1..m,
Then _TEnv |- (lambda () _e1 ... _em) : [Empty -> _Um]

111/142

Type Inference With Equations Step by Step

Extracting the type restriction on the involved
sub-expressions yields:

• For (lambda (v1 ... vn) e1 ... em), construct the
equation:
T(lambda (v1 ... vn) e1 ... em) = [Tv1 × . . .× Tvn → Tem]

• For (lambda () e1 ... em), construct the equation:
T(lambda () e1 ... em) = [Empty → Tem]

112/142

Type Inference With Equations Step by Step

3. Application: The type-inference rule is:
Typing rule Application:

For every: type environment _TEnv,
expressions _f, _e1, ..., _en, n >= 0 , and
type expressions _S1, ..., _Sn, _S:

Procedure with parameters (n > 0):
If _TEnv |- _f : [_S1*...*_Sn -> _S],

_TEnv |- _e1 : _S1, ..., _TEnv |- _en : _Sn
Then _TEnv |- (_f _e1 ... _en) : _S

Parameter-less Procedure (n = 0):
If _TEnv |- _f : [Empty -> _S]
Then _TEnv |- (_f) : _S

113/142

Type Inference With Equations Step by Step

Extracting the type restriction on the involved
sub-expressions yields:

• For (f e1 ... en) with n > 0, construct
the equation:
Tf =

[
Te1 × . . .× Ten → T(f e1 ... en)

]
• For (f) construct the equation:
Tf =

[
Empty → T(f)

]
114/142

Type Inference With Equations Step by Step

Note: Observe that the inference rules for
Procedure and Application require type

inference for all internal expressions, even
though the final inferred type does not depend

on their type. Why?

115/142

Type Inference With Equations Step by Step

In the type-equations approach this
requirement is achieved by constructing type

equations for all sub-expressions, as described
below. The algorithm constructs equations for

the primitive sub-expressions and for all
composite sub-expressions.

116/142

Type Inference With Equations Step by Step

In our example:

117/142

Type Inference With Equations Step by Step

The equations for the primitive
sub-expressions are:

Expression Equation
3 Tnum3 = Number
+ T+ = [Number× Number → Number]

118/142

Type Inference With Equations Step by Step

The equations for composite sub-expressions
are:

Expression Equation
(lambda (f g) ...) T0 = [Tf × Tg → T1]
(lambda (x) ...) T1 = [Tx → T2]
(f (+ x (g 3))) Tf = [T3 → T2]
(+ x (g 3)) T+ = [Tx × T4 → T3]
(g 3) Tg = [Tnum3 → T4]

119/142

Type Inference With Equations Step by Step

Stage IV: Solving the Equations:
The equations are solved by gradually

producing type-substitutions for all type
variables. For an expression e, the algorithm
infers a type t if the final type-substitution

maps its variable Te to t.

120/142

Type Inference With Equations Step by Step

If an expression has an inferred type then all of
its sub-expressions have types as well. If the
procedure fails (output is FAIL) then either
there is a type error or the constructed type

equations are too weak.

121/142

Type Inference With Equations Step by Step

Circular type-substitution cause failure.

The solution is processed by considering the
equations one by one.

The equation solving process is described by
this algorithm:

122/142

Type Inference With Equations Step by Step

Input: A set of type equations.
Output: A type substitution or FAIL.

Initialization:
1. substitution := { }
2. Order the set of input equations

in any sequential order.
3. equation := te1 = te2, the first equation.

123/142

Type Inference With Equations Step by Step

Loop:
1. Apply the current substitution to the equation:

Let te1s := te1 o substitution
te2s := te2 o substitution

equation := te1s = te2s
2. If te1s and te2s are atomic types:

If te1s =/= te2s:
sub = FAIL

otherwise:
Do nothing.

124/142

Type Inference With Equations Step by Step

3. Without loss of generality:
If te1s = T, i.e., a type variable,

and te1s =/= te2s:
substitution := substitution o {T = te2s}

That is, apply the equation to substitution,
and add the equation to the substitution.
If the application fails (circular mapping),
substitution := FAIL.

125/142

Type Inference With Equations Step by Step

4. If te1s and te2s are composite types:
If they have the same type constructor:

Split te1s and te2s into component type
expressions, create equations for
corresponding components, and add
the new equations to the pool of equations.

otherwise:
substitution := FAIL

126/142

Type Inference With Equations Step by Step

5. Without loss of generality:
If te1s is an atomic type
and te2s is a composite type:

substitution := FAIL
6. If there is a next equation:

equation := next(equations)

Until substitution = FAIL or no more equations

Return: substitution

127/142

Type Inference With Equations Step by Step

This algorithm computes the unifier of all the
equations into a single consistent type

substitution.

128/142

Type Inference With Equations Step by Step

In other words, each time we process an
equation Te1 = Te2, we make the two sides
equal by finding their unifier and then apply

the resulting unifier to the remaining equations
and continue the process.

129/142

Type Inference With Equations Step by Step

The constraints flow from equation to equation
because we re-use the same substitution
across equations and, thus, propagate

information from one equation to the next.

130/142

Type Inference With Equations Step by Step

Let us continue our example applying this
algorithm to solve the equations:

131/142

Type Inference With Equations Step by Step

Equations Substitution
1. T0 = [Tf × Tg → T1]
2. T1 = [Tx → T2]
3. Tf = [T3 → T2]
4. T+ = [Tx × T4 → T3]
5. Tg = [Tnum3 → T4]
6. Tnum3 = N
7. T+ = [N× N → N]

132/142

Type Inference With Equations Step by Step

Equations Substitution
2. T1 = [Tx → T2] T0 = [Tf × Tg → T1]
3. Tf = [T3 → T2]
4. T+ = [Tx × T4 → T3]
5. Tg = [Tnum3 → T4]
6. Tnum3 = N
7. T+ = [N× N → N]

133/142

Type Inference With Equations Step by Step

Equations Substitution
3. Tf = [T3 → T2] T0 = [Tf × Tg → [Tx → T2]]
4. T+ = [Tx × T4 → T3] T1 = [Tx → T2]
5. Tg = [Tnum3 → T4]
6. Tnum3 = N
7. T+ = [N× N → N]

134/142

Type Inference With Equations Step by Step

Equations Substitution
4. T+ = [Tx × T4 → T3] T0 = [[T3 → T2]× Tg → [Tx → T2]]
5. Tg = [Tnum3 → T4] T1 = [Tx → T2]
6. Tnum3 = N Tf = [T3 → T2]
7. T+ = [N× N → N]

135/142

Type Inference With Equations Step by Step

Equations Substitution
5. Tg = [Tnum3 → T4] T0 = [[T3 → T2]× Tg → [Tx → T2]]
6. Tnum3 = N T1 = [Tx → T2]
7. T+ = [N× N → N] Tf = [T3 → T2]

T+ = [Tx × T4 → T3]

136/142

Type Inference With Equations Step by Step

Equations Substitution
6. Tnum3 = N T0 = [[T3 → T2]× [Tnum3 → T4] → [Tx → T2]]
7. T+ = [N× N → N] T1 = [Tx → T2]

Tf = [T3 → T2]
T+ = [Tx × T4 → T3]
Tg = [Tnum3 → T4]

137/142

Type Inference With Equations Step by Step

Equations Substitution
7. T+ = [N× N → N] T0 = [[T3 → T2]× [N → T4] → [Tx → T2]]

T1 = [Tx → T2]
Tf = [T3 → T2]
T+ = [Tx × T4 → T3]
Tg = [N → T4]
Tnum3 = N

138/142

Type Inference With Equations Step by Step

Equations Substitution
8. Tx = N T0 = [[T3 → T2]× [N → T4] → [Tx → T2]]
9. T4 = N T1 = [Tx → T2]
10. T3 = N Tf = [T3 → T2]

Tg = [N → T4]
Tnum3 = N

139/142

Type Inference With Equations Step by Step

Equations Substitution
T0 = [[N → T2]× [N → N] → [N → T2]]
T1 = [N → T2]
Tf = [N → T2]
Tg = [N → N]
Tnum3 = N
Tx = N
T4 = N
T3 = N

140/142

Type Inference With Equations Step by Step

On the basis of this substitution, we can return
the fully annotated expression:

141/142

Type Inference With Equations Step by Step

(lambda ((f : Tf) (g : Tg)) : T1
(lambda ((x : Tx)) : T2
(f (+ x (g 3)))))

becomes:
(lambda ((f : (number -> T2))

(g : (number -> number))) : (number -> T2)
(lambda ((x : number)) : T2
(f (+ x (g 3)))))

142/142

