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Continuation Passing Style

We return to Scheme and investigate functional
techniques to model and understand advanced
control structures in addition to conditionals,

function invocation and iteration.
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Conditionals, Sequence, Recursion and Iteration in Scheme

The traditional control structures in
programming languages are:
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Conditionals, Sequence, Recursion and Iteration in Scheme

• Conditionals: are provided in Scheme with
the special forms if and cond - they must
be supported as part of the operational
semantics of the language.
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Conditionals, Sequence, Recursion and Iteration in Scheme

• Sequence: are supported in Scheme in the
body of procedures and let expressions;
they are useful when we execute procedures
with side effects.
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Conditionals, Sequence, Recursion and Iteration in Scheme

• Recursion and Iteration: There is no special
form in Scheme for loops and iterations.
Instead, loops are implemented using a
specific form of recursion.
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Conditionals, Sequence, Recursion and Iteration in Scheme

Consider the comparison between these two
functions computing the factorial of a number

n:
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Conditionals, Sequence, Recursion and Iteration in Scheme

(define fact
(lambda (n)
(if (= n 0)

1
(* n (fact (- n 1))))))

(define fact-iter
(lambda (n acc)
(if (= n 0)

acc
(fact-iter (- n 1) (* n acc)))))
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Conditionals, Sequence, Recursion and Iteration in Scheme

The evaluation of fact generates a recursive
process - the steps of the evaluation look as

follows:
(fact 6)
(* 6 (fact 5))
...
(* 6 (* 5 (* 4 (* 3 (* 2 (* 1 1))))))
(* 6 (* 5 (* 4 (* 3 (* 2 1)))))
(* 6 (* 5 (* 4 (* 3 2))))
...
(* 6 120)
720
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Conditionals, Sequence, Recursion and Iteration in Scheme

In contrast, the fact-iter function generates
an iterative process - the steps of the

evaluation look as follows:
(fact-iter 6 1)
(fact-iter 5 6)
(fact-iter 4 30)
(fact-iter 3 120)
(fact-iter 2 360)
(fact-iter 1 720)
720
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Conditionals, Sequence, Recursion and Iteration in Scheme

Observe that each call of fact in the trace is
executed in a control context - which indicates
what computation is to be done after the call
completes. We see that this context grows in

each successive call - until the base case of the
recursion is reached.
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Conditionals, Sequence, Recursion and Iteration in Scheme

At this point, the accumulated context is
executed, step by step, and this control context
is consumed, until the result of the recursion is

obtained. This type of recursive process
execution consumes memory in this case
proportional to the input parameter n. The
memory is consumed on a stack of frames.
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Conditionals, Sequence, Recursion and Iteration in Scheme

In contrast, in the process generated by
fact-iter there is no control context

generated: each time the call to fact-iter is
executed, there is no next computation that
needs to be done with the return value of

fact-iter. We say that fact-iter occurs in
tail position in the function. Such procedures
can be executed without consuming stack

frames.
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Conditionals, Sequence, Recursion and Iteration in Scheme

The operational semantics of Scheme requires
that the execution of tail recursive procedures
do not consume control memory. Hence, tail
recursion is the construct used in Scheme to

support iteration.
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Conditionals, Sequence, Recursion and Iteration in Scheme

Observe that the iterative procedure
fact-iter has two parameters - one

represents the current number over which is to
be computed, the second one is an

accumulator, in which we incrementally
compute the result of the computation.
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Tail Recursive Implementation

While Scheme requires that tail recursion be
implemented in an iterative manner, JavaScript
does not impose this behavior. How can we find

out whether Node.js implementation is
tail-recursive?
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Tail Recursive Implementation

The easiest way is to try it: recursive calls
consume memory on a stack. This stack is
usually limited in size to avoid an infinite

recursive call from consuming all the RAM of
the process.
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Tail Recursive Implementation

If we run a tail-recursive procedure in
JavaScript in Node.js, we find out it fails with an
error of type “Stack Overflow” - which indicates
the execution consumes stack memory - or in
other words, Node.js does not implement tail

recursion in an iterative manner.
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Tail Recursive Implementation

const factIter = (n: number, acc: number): number =>
n === 0 ? acc :
factIter(n - 1, n * acc);

console.log(factIter(100000, 1));
// RangeError: Maximum call stack size exceeded
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Tail Recursive Implementation

What can we infer from this fact about the
following question:

• Our interpreter for L5 is written in
JavaScript, which does not implement tail
recursion as iteration.

• Does our interpreter implement tail
recursion as iteration?
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Tail Recursive Implementation

We can test empirically this question using the
same method as we did for testing whether

Node.js implements tail recursion as iteration:
run the following L5 program in our interpreter:

bind(parseL5(`
(L5 (define factIter

(lambda (n acc)
(if (= n 0)

acc
(factIter (- n 1) (* n acc)))))

(factIter 10000 1))
`), evalProgram); // RangeError: Maximum call

// stack size exceeded
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Tail Recursive Implementation

In other words, L5 does not implement the
Scheme requirement that the interpreter

execute tail-recursive programs in an iterative
manner.
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Tail Recursive Implementation

In this chapter, we design a strategy that
enables us to meet this requirement:

implement an interpreter that executes
tail-recursive programs in an iterative manner
even though the meta-language (JavaScript in

our case) does not provide this behavior.
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Tail Recursive Implementation

We do not complete the code for this
interpreter, but develop the strategy through
the analysis of a general code transformation
strategy called CPS - Continuation Passing

Style.
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Delayed Computation in Scheme

An important usage of procedure expressions is
delaying computation: when a procedure

returns a closure, the computation embedded
in the returned closure is not applied; instead it

is delayed until the closure is applied.
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Delayed Computation in Scheme

For example:

(define make-delayed
(lambda (n)

(lambda ()
(fact n))))
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Delayed Computation in Scheme

When invoked, this function constructs a
delayed computation:

(let ((f4 (make-delayed 4)))
(do-something)
(f4))

27/148



Delayed Computation in Scheme

f4 is a procedure of no argument which
encapsulates the computation (fact 4).
When it is created, a closure is constructed -
but it is not invoked. We can then do other
activities, and later, when the programmer

decides, in the future, this delayed computation
can be invoked in the form (f4).
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Delayed Computation in Scheme

This closure plays a role similar to the tasks we
reviewed in the previous lecture when
discussing the Node event loop and

asynchronous functions. The difference is that,
in the Scheme case, we have not yet defined
the framework in which we post tasks and
which decides when to invoke these tasks.
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Delayed Computation in Scheme

This simple mechanism of using closures for
delayed computations allows the Scheme
programmer to design advanced control

structures.
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Delayed Computation in Scheme

Let us consider two examples where this
technique is applied:

• Write procedures which compute explicitly
delayed computations with one or two
continuations

• Model streams which are similar to the
generator pattern reviewed in JavaScript.
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Continuation Passing

Consider these two variants of the factorial
procedure:

(define fact
(lambda (n)

(if (= n 1)
1
(* n (fact (- n 1))))))

(define fact$
(lambda (n cont)

(if (= n 1)
(cont 1)
(fact$ (- n 1)

(lambda (res) (cont (* n res)))))))
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Continuation Passing

Observe the function fact$ (we use the
convention of naming procedures which follow
this pattern with a dollar sign at the end). This

procedure receives a parameter which we
conventionally name cont which represents a
delayed computation - that is, a procedure

which expects a single parameter, and applies a
delayed computation to this value.
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Continuation Passing

The type of this parameter is simply a closure
which receives as argument the type that the
overall function returns - in the case of fact$

it has type [Number -> T].
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Continuation Passing

The procedure fact$ models the following
computation:
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Continuation Passing

• If the base case of the recursion is reached,
apply the continuation cont to the base
value (cont 1).
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Continuation Passing

• Else, build a new continuation
(lambda (res) (cont (* n res)))
which represents the context of “what
should be done after we compute the
recursive case (fact (- n 1))” - then
recursively invoke (fact$ (- n 1)) with
this new continuation.

37/148



Continuation Passing

Let us trace this function to understand how it
models the control context explicitly:

(fact$ 3 (lambda (x) x))
;; k3 = (lambda (x) x)

(fact$ 2 (lambda (res) (k3 (* 3 res))))
;; k2 = (lambda (res) (k3 (* 3 res)))

(fact$ 1 (lambda (res) (k2 (* 2 res))))
;; k1 = (lambda (res) (k2 (* 2 res)))

(k1 1)
(k2 (* 2 1))
(k3 (* 3 2))
((lambda (x) x) 6) ;; => 6
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Continuation Passing

The execution of the function does not
consume stack space - fact$ is a tail recursive

iterative function. But observe that the
parameter cont grows in each successive call:
k3 = (lambda (x) x)
k2 = (lambda (res) ((lambda (x) x) (* 3 res)))
k1 = (lambda (res)

((lambda (res)
((lambda (x) x) (* 3 res)))

(* 2 res)))
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Continuation Passing

In a schematic manner, we see that this version
explicitly represents the control context in the

form of a closure. We can think of this
procedure as an iterative procedure which
constructs its own control stack in its local
parameter cont instead of relying on the

interpreter’s control stack.
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Characterizing Iteration: Head and Tail Positions

How can we tell a program will yield an iterative
process when it is evaluated in Scheme as

opposed to a recursive one?
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Characterizing Iteration: Head and Tail Positions

In other words, let us determine through static
analysis of the syntactic structure of a program

whether its evaluation will consume
unbounded control space - stack space which
is proportional to the arguments and thus can

grow to a non-constant size.
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Characterizing Iteration: Head and Tail Positions

This analysis can be formalized and automated,
so that an expression can be proven to create

iterative processes.

43/148



Characterizing Iteration: Head and Tail Positions

This analysis is based on the distinction of two
syntactic positions within the AST of the

language:
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Characterizing Iteration: Head and Tail Positions

• Head position: sub-expressions of an
expression which must be evaluated before
the value of the overall expression is
computed through primitive combination.
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Characterizing Iteration: Head and Tail Positions

• Tail position: sub-expressions of an
expression which are evaluated and whose
value is not further combined with any
other computation to return the value of
the overall expression.
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Characterizing Iteration: Head and Tail Positions

For example, consider the expression:

(if (> x 2) (* x 3) x)
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Characterizing Iteration: Head and Tail Positions

(if (> x 2) (* x 3) x)
To compute this expression, according to the
computation rule of IfExp AST nodes in the

operational semantics of the language, we must
first compute the test sub-expression (> x 2).

This sub-expression is in Head position.

48/148



Characterizing Iteration: Head and Tail Positions

(if (> x 2) (* x 3) x)
Then, based on the value which is obtained, we

compute either (* x 3) or x - without
combining their resulting value with any other
computation. These sub-expressions are in Tail

position of the if expression.
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Characterizing Iteration: Head and Tail Positions

Tail positions are positions whose evaluations
is the last to occur.
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Characterizing Iteration: Head and Tail Positions

Let us review the whole abstract syntax of our
language and identify Head positions marked
as H and tail positions marked as T. We only
need to review compound expressions, since

the definition of Head and Tail positions is only
relevant for positions within a compound

expression:
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Characterizing Iteration: Head and Tail Positions

1. (define var H)
2. (if H T T)
3. (lambda (v1 ... vn) E ... E)
4. (let ((v1 H) ...) H ... T)
5. (H H ... H)
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Characterizing Iteration: Head and Tail Positions

In a procedure expression (lambda), the
sub-expressions are neither Head nor Tail

position - since they are not computed when
we compute the value of the lambda

expression - and we note this with E position.
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Characterizing Iteration: Head and Tail Positions

However, if we want to analyze a complete
program to determine whether it has the

potential to create a non-iterative process, we
must also analyze the body of all the
procedures as if they could be applied.
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Characterizing Iteration: Head and Tail Positions

When we perform this analysis, we must also
analyze the body of the procedures and

attribute positions H for all the sub-expressions
in the sequence except the last which is Tail -

as in the body of a let expression.

55/148



Characterizing Iteration: Head and Tail Positions

Definition: Tail Form
An expression is in tail form if its head
positions do not include applications with
non-primitive operators, and its
sub-expressions are all in tail form. Atomic
expressions and combinations of atomic
applications are in tail form.
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Characterizing Iteration: Head and Tail Positions

Examples:

• (+ 1 x) is in tail form.
• (* (* x x) (+ x x)) is in tail form
(combination of primitive applications).

• (if p x (+ 1 (+ 1 x))) is in tail form.
• (f (+ x y)) is in tail form.
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Characterizing Iteration: Head and Tail Positions

Examples:

• (+ 1 (f x)) is not in tail form (but
(f x) is in tail form) because after (f x)
is computed, the result must be passed to
further computation.

• (if p x (f (- x 1))) is in tail form.
• (if (f x) x (f (- x 1))) is not in
tail form - because the head call (f x)
must be followed by other calls.

• (lambda (x) (f x)) is in tail form.
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Characterizing Iteration: Head and Tail Positions

Examples:

• (lambda (x) (+ 1 (f x))) is not in
tail form because the sub-expression
(+ 1 (f x)) is not in tail form.

• (lambda (x) (g (f 5))) is not in tail
form.
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Characterizing Iteration: Head and Tail Positions

Expressions in tail form create iterative
processes when they are evaluated.

We will present an argument supporting this
conclusion later.
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Characterizing Iteration: Head and Tail Positions

First, let us present a systematic transformation
which generates a tail-form expression for any
given expression which is equivalent to the

original expression in a specific sense.
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Continuation Passing Style (CPS)

Continuation Passing Style (CPS) is a
programming technique which assumes that

every user defined procedure f$ has a specific
argument called its continuation, which is used
to carry the control context of the computation.
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Continuation Passing Style (CPS)

Consider a regular function f - used in a
specific context:

(+ (f a) (* a a))
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Continuation Passing Style (CPS)

The context in which (f a) is invoked is:

(+ <r> (* a a))
where <r> represents the result of computing

(f a).
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Continuation Passing Style (CPS)

In CPS, we encapsulate this context into a
continuation procedure - which receives the
result of computing (f a) and pass it to the

CPS function f$:

(f$ a (lambda (res) (+ res (* a a))))
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Continuation Passing Style (CPS)

In general, the continuation parameter passed
to CPS functions represents the future

computation that needs to be applied once the
computation of f$ ends.
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CPS Equivalence

We say that a procedure

(f$ x1 ... xn cont)
is CPS-equivalent to a function

(f x1 ... xn)
if - for every parameters (x1 ... xn), and

every continuation procedure k:
(f$ x1 ... xn k) = (k (f x1 ... xn)).
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CPS Equivalence

Note the type relations between a procedure f
and its CPS-equivalent procedure f$:

f: [T1 * ... * Tn -> T]
f$: [T1 * ... * Tn * [T -> K] -> K]
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CPS Equivalence

In particular, using the identity procedure
id = (lambda (x) x), the equivalence
(f$ x1 ... xn id) = (f x1 ... xn)

holds when f and f$ are CPS-equivalent for all
possible arguments (x1 ... xn).

69/148



CPS Transformation

It is surprisingly possible to transform
systematically any expression of our language
L5 to a CPS-equivalent expression which is in

tail-form.
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CPS Transformation

The method consists of identifying any head
position in the expression which is not a

primitive combination, to extract it as the first
call of the CPS version, and to encapsulate the
resulting context as the continuation of the CPS

version.
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CPS Transformation

The process is repeated until all head positions
in the expression are left as primitive

compositions and all the user-procedure calls
are encapsulated into nested continuations.
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CPS Transformation

Let us review examples of this transformation:
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CPS of Tail Form Expressions

In the following cases, the original procedures
are already in tail-form, the CPS transformation

consists of simply adding a continuation
parameter:

(define square (lambda (x) (* x x)))
(define add1 (lambda (x) (+ x 1)))

(define square$ (lambda (x cont) (cont (* x x))))
(define add1$ (lambda (x cont) (cont (+ x 1))))
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CPS of Tail Form Expressions

Let us consider the next increment of
complexity, with an expression which is still in
tail-form - but with a user-defined procedure.
In this case, we transform the user procedure
with its CPS-equivalent and simply pass the
continuation argument to the CPS version:
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CPS of Tail Form Expressions

(define h
(lambda (x) (add1 (+ x 1))))

(define h$
(lambda (x cont) (add1$ (+ x 1) cont)))
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CPS of Nested Applications

The next case is a nested user procedure call:
the function is not in tail-form.

(define h1
(lambda (x) (square (add1 (+ x 1)))))

(define h1$
(lambda (x cont)
(add1$ (+ x 1) (lambda (add1-res)

(square$ add1-res cont)))
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CPS of Nested Applications

In this case, we identify the first head position
in the body of the procedure: this is the call
(add1 (+ x 1)). This sub-expression is the
first expression which is evaluated when the

body of the procedure is evaluated.
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CPS of Nested Applications

It is evaluated in a non-tail position – because
the result of this evaluation must be passed to

the context: (square <res>). The CPS
transformation abstracts away this context into
the continuation and moves the inner-most
user-function application as the body of the

procedure.
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CPS of Nested Applications

The context is:
cont1 = (lambda (add1-res) (square add1-res))

80/148



CPS of Nested Applications

We read the resulting CPS h1$ functions as:
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CPS of Nested Applications

• First compute the user procedure
(add1$ (+ x 1) ...)
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CPS of Nested Applications

• And pass the result of this procedure to the
continuation
(lambda (add1-res) ...). Note that
by convention we name the parameter of
the continuation with the name
<name-of-user-procedure>-res - in
this case add1-res - to indicate that this
parameter will be bound to the result of the
add1 application when the continuation
will be invoked.
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CPS of Nested Applications

• Transform the context procedure into a CPS
form - (square add1-res) becomes
(square$ add1-res cont) - as was
discussed in the previous example.
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CPS Determines the Order of Evaluation of Arguments

When we specified the operational semantics
of application expressions in applicative order,

we indicated that the Scheme semantics
specifically indicate that the order of

evaluation of arguments within an application
(rator rand1 ... randn) is not specified
and can be determined by the implementation.

That is, the interpreter is free to evaluate
rand2 before rand1 or vice-versa.
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CPS Determines the Order of Evaluation of Arguments

When we transform an expression of this type
to CPS, we must select a sub-expression (an

operand) that will become the first head to be
evaluated.
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CPS Determines the Order of Evaluation of Arguments

Consider the following example:
(define mult
(lambda (x y) (* x y)))

(define h2
(lambda (x y) (mult (square x) (add1 y))))
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CPS Determines the Order of Evaluation of Arguments

;; In CPS:
(define mult$
(lambda (x y cont) (cont (* x y))))

(define h2-1$
(lambda (x y cont)

(square$ x
(lambda (square-res)

(add1$ y
(lambda (add1-res)
(mult$ square-res add1-res cont)))))))
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CPS Determines the Order of Evaluation of Arguments

In this transformation, we identified two
user-procedure applications - square and

add1 - in non-tail position (within the context
of (mult s a). We decide to move the first
operand (square x) to the first evaluated
expression in CPS - and move the rest of the

calls to the continuation.
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CPS Determines the Order of Evaluation of Arguments

The order of evaluations in the h2-1$ version
is:

1. First compute (square x)
2. Then pass the result square-res to the

continuation which computes (add1 y)
3. Then pass the result add1-res to the

continuation which computes (mult s a)
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CPS Determines the Order of Evaluation of Arguments

We can also generate the alternative version
where (add1 y) is first computed, and

(square x) second:
(define h2-2$
(lambda (x y cont)

(add1$ y
(lambda (add1-res)

(square$ x
(lambda (square-res)
(mult$ square-res add1-res cont)))))))
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CPS Determines the Order of Evaluation of Arguments

By convention, in the CPS transformation we
will select arguments in left-to-right order -

even if this is not the only possible
transformation.
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CPS of Tree Recursion Procedures

Let us consider the following example of a
recursion which generates a tree-recursive

process when evaluated, and transform it to a
CPS-equivalent version:

(define sum-odd-squares
(lambda (tree)
(cond ((empty? tree) 0)

((not (list? tree))
(if (odd? tree) (square tree) 0))

(else (+ (sum-odd-squares (car tree))
(sum-odd-squares (cdr tree)))))))
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CPS of Tree Recursion Procedures

We consider the branches of the cond
expression one by one. In branches 1 and 2,

both tests are primitive combinations, and the
consequents are in tail-form. The else branch
has no user-procedure call in head position.

Hence the CPS-transformation does not change
the structure of the cond expression. The first

stage of the transformation is thus:
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CPS of Tree Recursion Procedures

(define sum-odd-squares$
(lambda (tree cont)
(cond ((empty? tree) (cont 0))

((not (list? tree))
(if (odd? tree) (square$ tree cont) (cont 0)))
(else <<CPS-transform (+ (sum-odd-squares (car tree))

(sum-odd-squares (cdr tree)))>>))
))
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CPS of Tree Recursion Procedures

Let us now consider the consequent of the last
branch. There are two user-procedure calls

which are in non-tail position. We pick the first
one, and turn it as the first call of the CPS.
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CPS of Tree Recursion Procedures

(define sum-odd-squares$
(lambda (tree cont)
(cond ((empty? tree) (cont 0))

((not (list? tree))
(if (odd? tree) (square$ tree cont) (cont 0)))
(else (sum-odd-squares$ (car tree)

(lambda (sum-odd-squares-car-res)
<<CPS-transform (+ sum-odd-squares-car-res

(sum-odd-squares (cdr tree)))>>
))))))
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CPS of Tree Recursion Procedures

We have pushed the CPS transformation inside
- let us complete it:
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CPS of Tree Recursion Procedures

(define sum-odd-squares$
(lambda (tree cont)
(cond ((empty? tree) (cont 0))

((not (list? tree))
(if (odd? tree) (square$ tree cont) (cont 0)))
(else (sum-odd-squares$ (car tree)

(lambda (sum-odd-squares-car-res)
(sum-odd-squares$ (cdr tree)

(lambda (sum-odd-square-cdr-res)
(cont (+ sum-odd-square-car-res

sum-odd-square-cdr-res))))))))))
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CPS Transformation of Higher-Order Procedures

Let us consider the transformation of function
which receives a function as a parameter - for

example the map operator:
(define map
(lambda (f lst)
(if (empty? lst)

lst
(cons (f (car lst))

(map f (cdr lst))))))
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CPS Transformation of Higher-Order Procedures

This procedure includes two user-procedure
calls, nested within a cons application - hence
not in tail position. Therefore, the process is
not iterative. The two nested user procedure
calls appear in the arguments of the cons

application.
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CPS Transformation of Higher-Order Procedures

Note that the test of the if expression and the
then-part are all primitive combinations, hence,

no CPS transformation is required besides
wrapping the tail value in the cont call.
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CPS Transformation of Higher-Order Procedures

We select the first argument of cons as the first
nested call and move it as the first step of the

CPS-transformed version:
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CPS Transformation of Higher-Order Procedures

(define map$
(lambda (f$ lst cont)

(if (empty? lst)
(cont lst)
(f$ (car lst)

(lambda (f-res)
<<CPS-transform (cons f-res

(map f$ (cdr lst)))>>)))))
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CPS Transformation of Higher-Order Procedures

Note that in this transformation, we consider
that the f parameter we receive is a user
procedure in CPS format as well. This is

necessary, because CPS as a discipline is an
all-or-nothing proposition: all user-defined
procedures must be transformed in CPS to be

able to obtain a coherent CPS program.
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CPS Transformation of Higher-Order Procedures

We next observe the remaining segment to be
transformed in CPS:

(cons f-res (map f (cdr lst))). The
first sub-expression to be evaluated in this
context is (map f (cdr lst)) which we
push outside as the first step of the CPS

transformation - and we eventually obtain:
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CPS Transformation of Higher-Order Procedures

(define map$
(lambda (f$ lst cont)

(if (empty? lst)
(cont lst)
(f$ (car lst)

(lambda (f-car-res)
(map$ f$ (cdr lst)

(lambda (map-f-cdr-res)
(cont (cons f-car-res map-f-cdr-res)))))))))

107/148



CPS Transformation of Conditionals with Non-primitive Tests

Consider the CPS transformation of the filter
procedure:

(define filter
(lambda (pred? lst)
(cond ((empty? lst) lst)

((pred? (car lst))
(cons (car lst) (filter pred? (cdr lst))))

(else (filter pred? (cdr lst))))))
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CPS Transformation of Conditionals with Non-primitive Tests

The new configuration we meet is that the test
part of the second branch is a user-procedure
application (pred? (car lst)). In this case,
we must change the structure of the cond so

that we first compute the test value outside the
cond, then route the conditional inside the

continuation:
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CPS Transformation of Conditionals with Non-primitive Tests

(define filter$
(lambda (pred?$ lst cont)
(cond ((empty? lst) (cont lst))

(else (pred?$ (car lst)
(lambda (pred-res)

<<CPS-transformation
(cond (pred-res (cons (car lst)

(filter pred?$ (cdr lst))))
(else (filter pred?$ (cdr lst))))>>))))))
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CPS Transformation of Conditionals with Non-primitive Tests

The transformation here is that the cond
structure is split - in branches which can be
evaluated all in tail-form and those which

follow the test evaluation.

The next step of the CPS-transform is as
observed in previous examples:
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CPS Transformation of Conditionals with Non-primitive Tests

(define filter$
(lambda (pred?$ lst cont)
(cond ((empty? lst) (cont lst))

(else (pred?$ (car lst)
(lambda (pred-res)

(cond (pred-res (filter$ pred?$ (cdr lst)
(lambda (filter-cdr-res)
(cont (cons (car lst)

filter-cdr-res)))))
(else (filter$ pred?$ (cdr lst) cont)))))))))
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Summary: CPS Transformation

We have learned how to transform any
expression in the language into a tail-form
CPS-equivalent expression. When evaluating
the CPS-equivalent version of the expression,
our interpreter yields a tail-recursive iterative
process which does not consume control space
(the stack does not grow in an unbounded way

dependent on the parameters fed to the
program).
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Summary: CPS Transformation

Instead, the explicit continuation parameter
which is added to all procedure calls records

the control context of the procedure
applications. This parameter does grow
according to the size of the parameters.
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Summary: CPS Transformation

Note how the CPS transformation is similar to
the transformation from synchronous function
calls to asynchronous function calls which we

discussed in the previous lecture:
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Summary: CPS Transformation

Application expressions appear in the CPS
version in the same order in which they are

evaluated; composed functions appear nested
inside the body of the continuation in the same
way as they appeared nested in the body of the

callbacks of the asynchronous functions.
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Summary: CPS Transformation

The difference between the event-driven model
we discussed in the Node.js environment and
the CPS model discussed in Scheme is that in
the asynchronous model, the continuations

(the tasks generated by asynchronous
functions) are posted on the task-queue and
executed by the interpreter according to the

event-model while in the CPS model in Scheme,
continuations are immediately invoked when

the preceding call completes.
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Success-Fail Continuations

A variant of the CPS model just introduced
allows us to handle error conditions in a more
flexible manner than was possible in the style

we have discussed so far.
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Success-Fail Continuations

Success-fail continuations remind us of the
structure of callbacks in Node.js and of

promises - which expect one continuation for
successful calls - passed in the

.then(success) method, and one for the
failure cases, passed in the .catch(fail)

method.
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Success-Fail Continuations

Consider a procedure which receives a
heterogeneous list and computes the sum of
the numeric items in the list. If any item in the
list is not a number - we want to trigger an
error and stop the computation (that is, we
stop the traversal of the list as soon as a

non-number item is detected).
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Success-Fail Continuations

Let us first write a traditional implementation
of this procedure, using the error primitive,

which is the equivalent of throwing an
exception:
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Success-Fail Continuations

;; Signature: sumlist(li)
;; Purpose: Sum the elements of a number list.
;; If the list includes a non number
;; element -- produce an error.
;; Type: [List -> Number union ???]
(define sumlist
(lambda (li)

(cond ((empty? li) 0)
((not (number? (car li)))
(error "non numeric value!"))
(else (+ (car li) (sumlist (cdr li)))))))
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Success-Fail Continuations

Consider an iterative CPS version of this
procedure, which uses success/fail

continuations:

123/148



Success-Fail Continuations

(define sumlist2
(lambda (li)
(letrec ((sumlist$

(lambda (li succ-cont fail-cont)
(cond ((empty? li) (succ-cont 0))

((number? (car li))
(sumlist$ (cdr li)

(lambda (sum-cdr) ;; success cont.
(succ-cont (+ (car li) sum-cdr)))

fail-cont))
;; error condition: invoke error handler
(else (fail-cont))))))

(sumlist$ li
(lambda (x) x)
(lambda () (display "non numeric value!"))))))
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Success-Fail Continuations

Observe first that the presence of errors is
problematic for our type system. We do not
know how to indicate, in the type of the

procedure, the fact that it potentially throws an
exception. For comparison, think of how this

condition is handled in Java.
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Success-Fail Continuations

In the CPS style, we handle errors by using
continuations - instead of using one

continuation as we did in the transformation
discussed above, we carry 2 continuations: one
for the successful computation path, and one

for error conditions.
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Success-Fail Continuations

Observe the type of the sumlist$ procedure
above:

[List * [Number -> Number] ;; success
* [Empty -> Void] ;; fail
-> (Number | Void)]
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Using Success-Fail Continuations for Search

Let us consider a procedure which traverses a
data structure (for example an AST), searching
for a node that meets a given criterion. If such

a node is met, we perform a success
computation; else we perform a fail

computation.
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Using Success-Fail Continuations for Search

In this case, we will use the success
continuation to indicate that the search has

completed, and that we continue the
computation by processing the element found.
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Using Success-Fail Continuations for Search

The fail continuation will be used to drive the
search for other elements within the data

structure, until, possibly, the data structure has
been exhausted, in which case, the original
fail continuation is applied, indicating a

failure to find an element meeting the criterion.
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Using Success-Fail Continuations for Search

The tree in this example is an unlabeled tree,
that is, a tree whose branches are unlabeled,

and whose leaves are labeled by atomic values.
This is the standard view of an heterogeneous

list. For example, ((3 4) 5 1) is a list
representation of such a tree.
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Using Success-Fail Continuations for Search

Tree interface:
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Using Success-Fail Continuations for Search

• Constructors: make-tree(t1,t2, ...),
add-subtree(first,rest),
make-leaf(data), empty-tree
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Using Success-Fail Continuations for Search

Tree interface:

• Accessors: first-subtree(tree),
rest-subtree(tree),
leaf-data(leaf)
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Using Success-Fail Continuations for Search

Tree interface:

• Predicates: composite-tree?(t),
leaf?(t), empty-tree?(t)
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Using Success-Fail Continuations for Search

In our simple implementation, we use:
(define make-tree list)
(define add-subtree cons)
(define make-leaf (lambda (x) x))
(define empty-tree? empty?)
(define first-subtree car)
(define rest-subtree cdr)
(define leaf-data (lambda (x) x))
(define composite-tree? list?)
(define leaf? (lambda (x) (not (composite-tree? x))))
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Using Success-Fail Continuations for Search

The CPS procedure uses a success and a fail
continuations.
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Using Success-Fail Continuations for Search

The important point in this procedure, is that
when an interior node is processed, the

procedure makes a non-deterministic decision:
it starts the traversal of the first sub-tree, which

may or may not contain the searched item.
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Using Success-Fail Continuations for Search

If this first traversal succeeds, the search
procedure completes; else we need to

backtrack and search the other sub-trees. We
need to keep track of this decision point

explicitly - so that this further search can be
performed in the future if needed.
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Using Success-Fail Continuations for Search

This is accomplished by constructing a
fail-continuation which remembers what are
the next sub-trees to be traversed. The fail
continuation is applied when the search

reaches a leaf and fails.
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Using Success-Fail Continuations for Search

;; Signature: leftmost-even(tree)
;; Purpose: Find the leftmost even leaf of an
;; unlabeled tree whose leaves are
;; labeled by numbers.
;; If no leaf is even, return #f.
;; Type: [List -> Number union Boolean]
;; Examples: (leftmost-even ’((1 2) (3 4 5))) ==> 2
;; (leftmost-even ’((1 1) (3 3) 5)) ==> #f
(define leftmost-even
(lambda (tree)

(leftmost-even$ tree
(lambda (x) x)
(lambda () #f))))
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Using Success-Fail Continuations for Search

(define leftmost-even$
(lambda (tree succ-cont fail-cont)
(cond ((empty-tree? tree) (fail-cont))

((leaf? tree)
(if (even? (leaf-data tree))

(succ-cont tree)
(fail-cont)))

(else ; Composite tree
(leftmost-even$ (first-subtree tree)

succ-cont
(lambda ()

(leftmost-even$ (rest-subtrees tree) ;*
succ-cont
fail-cont)))))))
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Using Success-Fail Continuations for Search

The leftmost-even procedure performs an
exhaustive search on the tree, until an even
leaf is found. Whenever the search in the first
sub-tree fails, it invokes a recursive search on

the rest of the sub-trees.
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Using Success-Fail Continuations for Search

This kind of search is a backtracking search
policy: If the decision to search in the first
sub-tree appears wrong, a retreat to the

decision point occurs, and an alternative route
is selected.
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Using Success-Fail Continuations for Search

Note that the fail continuation that is passed to
the fail continuation that is constructed in the

decision point (marked by *) is the fail
continuation that is passed to

leftmost-even$ as an argument.
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Using Success-Fail Continuations for Search

To understand that think about the decision
points:

• If the search in (first-subtree tree)
succeeds, then the future is succ-cont.

• If it fails, then the future is the search in
(rest-subtrees tree).

• If the search in (rest-subtrees tree)
succeeds, the future is succ-cont.

• If it fails, then the future is fail-cont.
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Using Success-Fail Continuations for Search

Finally, a non-CPS version:
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Using Success-Fail Continuations for Search

(define leftmost-even
(lambda (tree)
(letrec ((iter

(lambda (tree)
(cond ((empty-tree? tree) #f)

((leaf? tree)
(if (even? (leaf-data tree))

(leaf-data tree)
#f))

(else
(let ((res-first (iter (first-subtree tree))))

(if res-first
res-first
(iter (rest-subtrees tree)))))))))

(iter tree))))
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