
Principles of Programming Languages
Recursion and Mutation

1/85

Limitations of the Environment Model

The environment model we have introduced in
the previous lecture has a limitation: it does
not support recursive functions. Consider the

following program:
(let ((fact (lambda (n)

(if (= n 0)
1
(* n (fact (- n 1)))))))

(fact 3)) ;; => fact: unbound identifier

2/85

Limitations of the Environment Model

The reason we cannot invoke fact in the body
of the closure is that the closure is evaluated in
the global environment, before the fact binding
is added. Hence, when we apply the closure by
invoking (fact 3), we evaluate the body of
the closure in the same global environment -
and not in the environment created by the let

expression.

3/85

letrec

The solution introduced in Scheme in order to
address this issue is a separate special form
called letrec. letrec has exactly the same
syntax as let, but different scoping rules: the

right-side of the bindings in letrec are
evaluated in the environment which includes

the bindings.

4/85

letrec

(letrec ((fact (lambda (n)
(if (= n 0)

1
(* n (fact (- n 1)))))))

(fact 3)) ;; => 6

5/85

letrec

We address in this lecture how the interpreter
must be modified to support letrec.

6/85

Global Recursive Definition

A similar problem exists when evaluating global
definitions of recursive functions with define.

7/85

Global Recursive Definition

Recall from the binding rules we presented in a
previous lecture that in an expression

(define var val), val should be evaluated
within the scope of the var declaration. But

our implementation of the environment model
does not allow this. And indeed the following
test fails when we use the L4-eval interpreter

(see L4-eval.test.ts).

8/85

Global Recursive Definition

expect(bind(parseL4(`
(L4 (define f

(lambda (x)
(if (= x 0)

1
(* x (f (- x 1))))))

(f 3))`), evalProgram)).to.satisfy(isFailure);

9/85

Global Recursive Definition

We remember, however, that similar code did
work when using the L3-eval interpreter (see

L3.test.ts):

10/85

Global Recursive Definition

expect(bind(parseL3(`
(L3 (define map

(lambda (f l)
(if (eq? l '())

l
(cons (f (car l)) (map f (cdr l))))))

(map (lambda (x) (* x x)) '(1 2 3)))`),
evalL3program))

.to.deep.equal(makeOk(listPrim([1, 4, 9])));

11/85

Global Recursive Definition

That is, we did not meet the problem of global
recursive functions in the substitution model,
but we do face it in the environment model. Try

to understand why this was the case.

12/85

Global Recursive Definition

It is impossible to define recursive functions
using the let expression in both models
(substitution and environment models).

13/85

Global Recursive Definition

In this lecture, we clarify how to process
recursive definitions - both local (with letrec)

and global (with define).

14/85

Recursive Environment

The semantic evaluation rule of letrec we
want to achieve is that the right hand side of
the bindings are evaluated in the environment

that already includes the bindings.

15/85

Recursive Environment

That is, we want to evaluate:

(lambda (n)
(if (= n 0)

1
(* n (fact (- n 1)))))

in an environment where a binding for fact
already exists. This is important, because the

resulting value - a closure - must keep a
reference to this environment if we want the

recursion to work. 16/85

Recursive Environment

The problem is naturally that we cannot create
such an environment because we haven’t yet

computed the value for fact - chicken and egg
problem.

17/85

Recursive Environment

If we could create circular data structures, we
could think of a solution to this conundrum.

18/85

Recursive Environment

We find a solution that is specialized to
procedures and exploits their property.

19/85

Recursive Environment

Let us consider the syntax of letrec - and
keep it only for cases where we want to bind
procedures to names. In other cases, there is
rarely a reason to choose letrec instead of
let (there are some cases where this might be
useful, but we will not consider them at this

point).

20/85

Recursive Environment

<letrec-exp> ::= (letrec (<pbinding>*) <cexp>+)
// letrec-exp(bindings:List(Binding),

body:List(Cexp))

<pbinding> ::= (<var-decl> <proc-exp>)
// binding(var:Var-decl, val:proc-exp)

21/85

Recursive Environment

In this syntax, the right-hand side of a binding
in letrec can only be procedure expression

(lambda).

22/85

Recursive Environment

Let us consider the evaluation rule of the
closely related let-exp and pinpoint what

exactly must be changed for letrec:

23/85

Recursive Environment

If exp = let-exp(bindings, body):
env-eval(exp, env) is computed by:

let vars = variables in bindings
vals = value expressions in bindings
let cvals = map(val => eval(val, env), vals)

^ WE MUST CHANGE THIS FOR LETREC
return eval-sequence(body,

extend-env(env,
make-frame(vars,

cvals)))

24/85

Recursive Environment

We must change the way the values of the vars
are computed - so that they are computed in

the right environment.

25/85

Recursive Environment

This is where we see the opportunity: in order
to compute a closure, we do in fact very little -

we package three values together, the
procedure params, the procedure body and the

current environment.

26/85

Recursive Environment

That is, the computation of a closure is really a
simple affair - no recursion, just packing 3
values together into a closure structure.

27/85

Recursive Environment

Our problem is that when we want to compute
these closures, we do not have access to the
env value to be packed into the closure (recall

that a closure is an object with 3 fields
closure(bindings, body, env)).

28/85

Recursive Environment

The solution to this problem is: delay.

29/85

Recursive Environment

We do not have the env value when we create
the closure - but we do not really need it at this
point. We will need it in the future when the
closure is applied. When the closure will be
applied, we will have access to the new env.

30/85

Recursive Environment

Putting these ideas together, we define a new
version of the environment data structure
which supports a new special form of
environments which we call recursive

environments:

31/85

Recursive Environment

// Add a new option for environments
<env> ::= <empty-env> | <extended-env> | <recursive-env>

// no fields - a singleton data type.
<empty-env> ::= ()

// Linked list of frames as previously
<extended-env> ::= extended-env(frame:Frame,

enclosing-env:Env)

<rec-env> ::= rec-env(vars:List(string),
paramss:List(List(var-decl)),
bodies:List(List(Cexp)),
enclosing-env:Env)

32/85

Recursive Environment

A rec-env stores a frame mapping names to
“almost closures” - that is a list of params and
a body. We do not store the closure-env in the

rec-env.

33/85

Recursive Environment

But when we compute the apply-env of a
rec-env to a string, we construct the closure

at lookup time, with the correct env:

34/85

Recursive Environment

define apply-env(env:Env, var:string)
// Same definition as the regular env
if env is empty-env:

error "Var not found"
else if env is extended-env:

if var is found in env->frame(env)
return apply-frame(frame, var)

else return apply-env(env->enclosing-env(env), var)

...

35/85

Recursive Environment

define apply-env(env:Env, var:string)
...

// New case of the recursive env
else if env is rec-env:

if var is the ith item in env->vars:
let params = env->paramss(env)[i]

body = env->bodies(env)[i]
// Construct the closure at lookup time
// using the env itself
return make-closure(params, body, env)

else
return apply-env(env->enclosing-env(env), var)

36/85

Recursive Environment

Observe how the closure is constructed at
lookup time - when we retrieve the value of a
variable from a recursive environment. At this

point, we have access to all the required
components: params, body and the env to

construct the correct closure.

37/85

Handling Recursive define Expressions

The solution we have implemented for letrec
must be extended to support recursive toplevel

definitions using define expressions.

38/85

Handling Recursive define Expressions

Recall that we handled define expressions in
the eval-program procedure: we obtain a list
of expressions, which can be either CExp or

DefineExp expressions. We evaluate each one
in turn, if it is a DefineExp, we evaluate it and
obtain a new environment, which is then used

for the remaining expressions.

39/85

Handling Recursive define Expressions

To support recursive define expressions, we
must consider the cases where the value of the
DefineExp is a ProcExp or a non-procedural

expression.

40/85

Handling Recursive define Expressions

We change this code:
const evalDefineExps =

(def: DefineExp, exps: Exp[], env: Env): Result<Value> =>
bind(applicativeEval(def.val, env),

(rhs: Value) => evalSequence(exps,
makeExtEnv([def.var.var],

[rhs], env)));

41/85

Handling Recursive define Expressions

To this:
const evalDefineExps =

(def: DefineExp, exps: Exp[], env: Env): Result<Value> =>
isProcExp(def.val) ?

evalSequence(exps, makeRecEnv([def.var.var], [def.val.args],
[def.val.body], env)) :

bind(applicativeEval(def.val, env),
(rhs: Value) => evalSequence(exps,

makeExtEnv([def.var.var],
[rhs], env)));

42/85

Handling Recursive define Expressions

With this definition, our interpreter supports
recursive toplevel procedures such as this

program:

(define f
(lambda (n)
(if (= n 0)

1
(* n (f (- n 1))))))

43/85

Forward Definitions and Toplevel Mutual Recursion

This implementation of define, however, has 2
limitations:

44/85

Forward Definitions and Toplevel Mutual Recursion

The following program fails:

(define f (lambda (x) (g x)))
(define g (lambda (x) x))
(f 5) ;; => g is undefined

45/85

Forward Definitions and Toplevel Mutual Recursion

This happens because, when we evaluate the
first define, we obtain a closure which refers
to the environment which contains f - but g is

not yet defined.

When we later define g in the second define,
the environment attached to the f closure is
not updated - it still does not know about g.

46/85

Forward Definitions and Toplevel Mutual Recursion

This behavior does not fit what happens in
Scheme and in JavaScript.

But it is in fact similar to what happens in
languages like Java and C++ and Pascal. In such
languages, a function cannot use in its body

another function which is not already declared
(in a header or in an import).

47/85

Forward Definitions and Toplevel Mutual Recursion

The second problem is that we cannot define
toplevel mutually recursive procedures in this

implementation:
(define even?

(lambda (x) (if (= x 0) #t (odd? (- x 1)))))
(define odd?

(lambda (x) (if (= x 0) #f (even? (- x 1)))))
(even? 10) ;; => odd? is not defined

48/85

Forward Definitions and Toplevel Mutual Recursion

We now develop a variant environment model
which implements the behavior of the global

environment according to the Scheme
semantics and supports the 2 cases above.

49/85

Recursion Using Mutation

Another way to support recursion in the
interpreter - for both letrec and define - is

to use mutation in the environment.
Let us first introduce support for mutation in

our subset of TypeScript by introducing the Box
data type.

50/85

Box Datatype in TypeScript

The box datatype is a way to encapsulate
places where we want to allow mutation in our

program.

51/85

Box Datatype in TypeScript

The box datatype is defined by the following
interface:

// Purpose: value constructor for box datatype
// Signature: makeBox(v)
// Type: [T -> Box(T)]

// Purpose: Type predicate for box datatype
// Signature: isBox(x)
// Type: [any -> Boolean]

52/85

Box Datatype in TypeScript

The box datatype is defined by the following
interface:

// Purpose: Accessor for the box datatype
// Signature: unbox(b)
// Type: [Box(T) -> T]

// Purpose: Mutator for the box datatype
// Signature: setBox(b, v)
// Type: [Box(T) * T -> void]

53/85

Box Datatype in TypeScript

We do not really need the box datatype in
TypeScript, since TypeScript supports mutation
(it is not a pure functional language). But we
introduce this datatype to mark explicitly the
places where we use mutation - so that we can
analyze and control precisely the impact of

these mutations.

54/85

Box Datatype in TypeScript

We implement the box datatype as follows:
// Box datatype
// Encapsulate mutation in a single type.
type Box<T> = T[];
const makeBox = <T>(x: T): Box<T> => ([x]);
const unbox = <T>(b: Box<T>): T => b[0];
const setBox = <T>(b: Box<T>, v: T): void => { b[0] = v; }

55/85

Mutable Environment Data Type

On the basis of the Box datatype, we define a
new mutable environment data type. We
distinguish two types of environments:

56/85

The Global Environment

• Contains the primitive bindings when the
interpreter starts in a single frame.

• The frame can be extended with new
bindings (using the define special form).

• Has no enclosing-environment.
• Is the last element in all the extended
environments.

57/85

Extended Environments

• These are all the other environments
constructed at runtime;

• They form a linked chain of frames ending
with the global-environment;

• One cannot add a binding to the frame of
an extended environment (in contrast to the
global environment).

• But one can change the value of variable in
a binding after the binding has been
initialized.

58/85

Mutable Environment Data Type

In this new model, the data types of env are:
<box-env> ::= <global-env> | <extended-box-env>

<global-env> ::= (global-env frame)
// global-env(frame:Box(Frame))

<extended-box-env> ::= (extended-box-env frame enclosing-env)
// extended-box-env(vars:List(string), frame: Frame)

<fbinding> ::= (var val)
// binding(var:string, val:Box(Value))

<frame> ::= (frame (var val)*)
// frame(bindings:List(fbinding))

59/85

Mutable Environment Data Type

The following operations are defined on this
datatype:

;; Purpose: lookup the value of a var in a frame.
;; Signature: applyFrame(frame, var)
;; Type: [Frame * string -> Value]

;; Purpose: update the value of a binding in a frame
;; Signature: setVarFrame(frame, var, val)
;; Type: [Frame * string * Value -> void]

;; Purpose: lookup the value of a var in an environment
;; Signature: applyEnv(env, var)
;; Type: [Box-env * string -> Value]

60/85

Mutable Environment Data Type

A key transformation in this model is that
variables are now bound to Boxes that contain
their values. In all previous models, variables

were directly bound to Values

61/85

Mutable Environment Data Type

The following operations are defined on this
datatype:

62/85

Mutable Environment Data Type

interface FBinding {
tag: "FBinding";
var: string;
val: Box<Value>;

};

63/85

Mutable Environment Data Type

const isFBinding = (x: any): x is FBinding =>
x.tag === "FBinding";

const makeFBinding = (v: string, val: Value): FBinding =>
({tag: "FBinding", var: v, val: makeBox(val)});

const getFBindingVar = (f: FBinding): string => f.var;
const getFBindingVal = (f: FBinding): Value => unbox(f.val);
const setFBinding = (f: FBinding, val: Value): void =>

{ setBox(f.val, val); };

64/85

Mutable Environment Data Type

interface Frame {
tag: "Frame";
fbindings: FBinding[];

};

65/85

Mutable Environment Data Type

const makeFrame = (vars: string[], vals: Value[]): Frame => ({
tag: "Frame",
fbindings: zipWith(makeFBinding, vars, vals)

});
const extendFrame = (frame: Frame, v: string, val: Value): Frame => ({

tag: "Frame",
fbindings: cons(makeFBinding(v, val), frame.fbindings)

})
const isFrame = (x: any): x is Frame => x.tag === "Frame";
const frameVars = (frame: Frame): string[] =>

map(getFBindingVar, frame.fbindings);
const frameVals = (frame: Frame): Value[] =>

map(getFBindingVal, frame.fbindings);

66/85

Mutable Environment Data Type

const applyFrame = (frame: Frame, v: string): Result<FBinding> => {
const pos = frameVars(frame).indexOf(v);
return (pos > -1) ? makeOk(frame.fbindings[pos])

: makeFailure(`Var not found: ${v}`);
};

const setVarFrame =
(frame: Frame, v: string, val: Value): Result<void> =>
bind(applyFrame(frame, v),

(bdg: FBinding) => makeOk(setFBinding(bdg, val)));

67/85

Mutable Environment Data Type

The global-env is modeled as a single global
variable - theGlobalEnv with a specific

method to add a binding to the single frame of
the global env:

68/85

Mutable Environment Data Type

interface GlobalEnv {
tag: "GlobalEnv";
frame: Box<Frame>;

};

const isGlobalEnv = (x: any): x is GlobalEnv =>
x.tag === "GlobalEnv";

const makeGlobalEnv = (): GlobalEnv =>
({tag: "GlobalEnv", frame: makeBox(makeFrame([], []))});

const theGlobalEnv = makeGlobalEnv();

69/85

Mutable Environment Data Type

const globalEnvSetFrame = (ge: GlobalEnv, f: Frame): void =>
setBox(ge.frame, f);

const globalEnvAddBinding = (v: string, val: Value): void =>
globalEnvSetFrame(theGlobalEnv,

extendFrame(unbox(theGlobalEnv.frame), v, val));

const applyGlobalEnvBdg =
(ge: GlobalEnv, v: string): Result<FBinding> =>
applyFrame(unbox(ge.frame), v);

70/85

Recursion with Box-Env

On the basis of the box-env, we implement the
letrec evaluation rule as follows:

71/85

Recursion with Box-Env

const evalLetrec = (exp: LetrecExp, env: Env): Result<Value> => {
const vars = map((b: Binding) => b.var.var, exp.bindings);
const vals = map((b: Binding) => b.val, exp.bindings);
const extEnv = makeExtEnv(vars,

repeat(undefined, vars.length),
env);

// @@ Compute the vals in the extended env
const cvalsResult =

mapResult((v: CExp) => applicativeEval(v, extEnv), vals);
const result = bind(

cvalsResult,
(cvals: Value[]) => makeOk(

zipWith((bdg, cval) => setFBinding(bdg, cval),
extEnv.frame.fbindings, cvals)

)
);
return bind(result, _ => evalSequence(exp.body, extEnv));

};

72/85

Recursion with Box-Env

Observe how we first create the environment
with dummy temporary values for all the vars
declared in the letrec (in the expression

makeExtEnv(vars, repeat(undefined, vars.length), env)),
then we evaluate them in this environment;

finally we update the bindings with the
computed values.

73/85

Recursion with Box-Env

define expressions are handled as part of the
eval-program which is modified as follows:

74/85

Recursion with Box-Env

const evalDefineExps = (def: DefineExp, exps: Exp[]): Result<Value> =>
bind(applicativeEval(def.val, theGlobalEnv),

(rhs: Value) => { globalEnvAddBinding(def.var.var, rhs);
return evalSequence(exps, theGlobalEnv); });

75/85

Recursion with Box-Env

The evaluation rule for DefineExp is the only
place which invokes the special method

globalEnvAddBinding which adds a binding
to the single frame of the global environment.

When this is performed, in effect, all the
extended environments which exist at this point
are modified - since their last frame is updated.

76/85

Recursion with Box-Env

The frame is updated by adding the new
binding at the beginning of the frame - thus

shadowing the previously defined value for the
defined string. We could change the

implementation to prevent the re-definition of
strings in the global environment.

77/85

Denoted Values

The change we have brought to the mutable
environment is quite profound.

• In all the previous models we had, variables
were bound to values.

• In this model, variables are bound to boxes
that contain values. The bindings are thus
mutable.

78/85

Denoted Values

This modification opens the route to
implementing variants of the interpreter such
as passing arguments by reference as can be
done in C++. We will not pursue this route
further, but obviously it would have deep

impact on the language design.

79/85

Denoted Values

In general, when describing the operational
semantics of a programming language, we have

so far described two sets:

• Expressions
• Values

80/85

Denoted Values

We now see that in addition to these two sets -
it is important to also describe the set called
Denoted Values which is the set of objects

bound to variables. In all the interpreters we
have seen before the box-env model, the set

structure of the interpreters was:

81/85

Denoted Values

• Input: Expressions (AST)
• Computed values: Value (Number | Boolean
| Sexp | Void | Closure)

• Denoted values = Computed values

82/85

Denoted Values

In the last model, we obtain:

• Input: Expressions (AST)
• Computed values: Value (Number | Boolean
| Sexp | Void | Closure)

• Denoted values = Box(Computed values)

83/85

Denoted Values

We could design a language which distinguishes
mutable and immutable variables. In this case,

the structure of the sets would be:

• Input: Expressions (AST)
• Computed values: Value (Number | Boolean
| Sexp | Void | Closure)

• Denoted values = Box(Computed values) |
Computed Values

84/85

Denoted Values

This is basically the structure of TypeScript
when using the Immutable.js package

mentioned in the first chapter.

85/85

