
Principles of Programming Languages
Syntactic Operations and Syntactic Properties of
Expressions

1/140

Previously

We covered in the previous lecture how to
specify the syntax of a programming language
and how to implement the parsing process

which turns a stream of characters denoting a
program into an Abstract Syntax Tree (AST)
value which can be easily processed by a

program such as an interpreter or a compiler.

2/140

Today

In this lecture, we demonstrate how syntactic
properties of expressions can be computed on
ASTs and how we can rewrite AST into different

ASTs. All of these operations on ASTs work
according to the same “recipe” - which consists
of following the structural induction principle.

3/140

L1 AST in TypeScript

We present a first version of the TypeScript
program which encodes the following BNF in a

set of disjoint union types in TypeScript.

4/140

L1 AST in TypeScript

<program> ::= (L1 <exp>+) // program(exps:List(exp))
<exp> ::= <define-exp> | <cexp>
<define-exp> ::= (define <var-decl> <cexp>)

// def-exp(var:var-decl, val:cexp)
<cexp> ::= <num-exp> // num-exp(val:Number)

| <bool-exp> // bool-exp(val:Boolean)
| <prim-op> // prim-op(op:String)
| <var-ref> // var-ref(var:String)
| (<cexp> <cexp>*) // app-exp(rator:cexp,

// rands:List(cexp))
<prim-op> ::= + | - | * | / | < | > | = | not
<num-exp> ::= a number token
<bool-exp> ::= #t | #f
<var-ref> ::= an identifier token
<var-decl> ::= an identifier token

5/140

L1 AST in TypeScript

We define the disjoint union types:

type Exp = DefineExp | CExp;
type CExp = NumExp | BoolExp | PrimOp

| VarRef | AppExp;

6/140

L1 AST in TypeScript

interfaces for each category:
interface Program {tag:"Program", exps: Exp[]}
interface DefineExp {tag:"DefineExp", var: VarDecl, val: CExp}
interface NumExp {tag:"NumExp", val:number}
interface BoolExp {tag:"BoolExp", val:boolean}
interface PrimOp {tag:"PrimOp", op:string}
interface VarRef {tag:"VarRef", var:string}
interface VarDecl {tag:"VarDecl", var:string}
interface AppExp {tag:"AppExp", rator:CExp, rands: CExp[]}

7/140

L1 AST in TypeScript

Constructors:
const makeProgram = (exps: Exp[]):Program =>
({tag:"Program", exps: exps});

const makeDefineExp = (v: VarDecl, val: CExp):DefineExp =>
({tag:"DefineExp", var:v, val:val});

const makeNumExp = (n: number):NumExp =>
({tag:"NumExp", val:n});

const makeBoolExp = (b: boolean):BoolExp =>
({tag:"BoolExp", val:b});

const makePrimOp = (op: string):PrimOp =>
({tag:"PrimOp", op: op});

const makeVarRef = (v: string):VarRef =>
({tag:"VarRef", var:v});

const makeVarDecl = (v: string):VarDecl =>
({tag:"VarDecl", var:v});

const makeAppExp = (rator:CExp, rands:CExp[]):AppExp =>
({tag:"AppExp", rator: rator, rands: rands}); 8/140

L1 AST in TypeScript

And type predicates:
const isProgram = (x:any): x is Program =>
x.tag === 'Program';

const isDefineExp = (x:any): x is DefineExp =>
x.tag === 'DefineExp';

const isNumExp = (x:any): x is NumExp =>
x.tag === 'NumExp';

const isBoolExp = (x:any): x is BoolExp =>
x.tag === 'BoolExp';

const isPrimOp = (x:any): x is PrimOp =>
x.tag === 'PrimOp';

const isVarRef = (x:any): x is VarRef =>
x.tag === 'VarRef';

const isVarDecl = (x:any): x is VarDecl =>
x.tag === 'VarDecl';

const isAppExp = (x:any): x is AppExp =>
x.tag === 'AppExp'; 9/140

L1 AST in TypeScript

const isExp = (x:any): x is Exp =>
isDefineExp(x) || isCExp(x);

const isCExp = (x:any): x is CExp =>
isNumExp(x) || isBoolExp(x) || isPrimOp(x) ||
isVarRef(x) || isAppExp(x);

10/140

L1 AST in TypeScript

Note the patterns used in the code:

11/140

L1 AST in TypeScript

• A constructor function named make which
takes as parameters each of the component
values of the compound type.

12/140

L1 AST in TypeScript

• A type predicate function named is. Note
the type annotation of this predicate: it
takes an any parameter and returns a
x is T type. Such types are understood by
the TypeScript type system and allow the
type checker to conclude that a variable has
the given type within a scope within a
program that is “guarded” by such a
predicate. We will see many examples using
this facility.

13/140

L1 AST in TypeScript

A disjoint union type construct has the
following shape:

type CExp = NumExp | BoolExp | PrimOp
| VarRef | AppExp;

which is a union of disjoint types. Each disjoint
type is defined as a tagged map. We use the

convention of using the key tag to enforce the
disjointness of these types. Any other key could
be used, but we use this one consistently to

express our intention of defining disjoint types.
14/140

L1 AST in TypeScript

The type definition following the key tag is a
singleton type - which contains a discriminative
string value. For example, the type expression:

tag: "NumExp"
within these type definitions indicates that the
key tag must have the unique value "NumExp"

for the map to belong to the type NumExp.

15/140

L1 AST in TypeScript

There is a constructor function for each disjoint
type, but none for the union type. In this sense,
we understand that the union type is a sort of

abstract type over the disjoint types.

16/140

L1 AST in TypeScript

The type predicate for each disjoint type checks
for the presence of the appropriate tag. The
type predicate for the union types is just a

boolean-or of the type predicates of the types
it covers.

17/140

AST Types are Recursive Types

The AST types we have defined above are
recursive. Some of the disjoint types of the

disjoint union are atomic, some are compound.
The one type that is recursive is CExp (C stands
for constituent expression - a constituent is a
component of a more complex structure). CExp

is defined as follows in the AST definition:

18/140

AST Types are Recursive Types

<cexp> ::= <num-exp> // num-exp(val:Number)
| <bool-exp> // bool-exp(val:Boolean)
| <prim-op> // prim-op(op:String)
| <var-ref> // var-ref(var:String)
| (<cexp> <cexp>*) // app-exp(rator:cexp,

// rands:List(cexp))

The only compound expression here is AppExp
- which is made up of CExp components. The
other types are atomic (NumExp, BoolExp,

PrimOp, VarRef).

19/140

AST Types are Recursive Types

This recursive definition is what makes the
language infinite. It also explain why AST are

called abstract syntax trees.

20/140

AST Types are Recursive Types

As usual - note that the corresponding
TypeScript type definitions are based on a
disjoint union to enable the recursive type

definition.

21/140

Parsing

The parser takes as input a string and returns
an AST value which encodes the structure of

values recognized in the string.

Parsing is a complex topic which will be covered
in much more detail in the Compilation course.

22/140

Using S-Expressions

In this course, we take a “shortcut” approach to
parsing, because the language we use is based
on a general structure called the S-Expression
(in short S-exp). The fact that Scheme and

LISP-like languages use S-exp as the basis for
their syntax is part of a general approach
towards simplicity and uniformity in these

languages.

23/140

Using S-Expressions

An S-exp is defined inductively as using the
following BNF (we ignore some of the elements

used in Lisp such as pairs for simplicity):
<S-exp> ::= <AtomicSexp> | <CompoundSexp>
<AtomicSexp> ::= <number> | <boolean>

| <string> | <symbol>
<CompoundSexp> ::= '(' <S-exp>* ')'

24/140

Using S-Expressions

The definition is recursive, leading to deeply
nested lists such as:

((1) ((2 "a") #t))

25/140

Using S-Expressions

In Scheme, S-exps are used both to encode
programs and data.

To implement our Scheme parser in TypeScript,
we rely on an existing Node parser for S-exp.

Make sure you install it in your work folder with:

> npm install s-expression

26/140

Using S-Expressions

The Sexp parser takes care of tokenization and
handling the nested parentheses in order to
construct a parallel structure of nested lists -
we have mapped a string into a JavaScript

S-exp. Note that the code of the S-exp parsers
is not very complex - you can read it all in the
module we have downloaded with npm. But at

this stage, we just skip its complexity.

27/140

Using S-Expressions

The S-exp values we obtain as output of the
S-exp parser are made up of nested lists of

strings only (the only atomic values that appear
are strings).

parseSexp("(+ 1 (* 2 3))");
// => ['+', '1', ['*', '2', '3']]

28/140

The S-Expression Type

The S-expression parser we use from npm is
written in JavaScript - it does not specify the

type of the value it returns.

29/140

The S-Expression Type

We analyzed the code, and inferred manually
the precise type returned by this parser and
added this type annotation, which we add as
the “contract” that we expect from the library
and which can be trusted by the TypeScript

type checker. This is achieved by adding a file
with extension d.ts in our codebase
src/shared/s-expression.d.ts:

30/140

The S-Expression Type

declare module 's-expression' {
export type SexpString = String;
export type Token = string | SexpString;
export type CompoundSexp = Sexp[];
export type Sexp = Token | CompoundSexp;

/*
The types returned by the parser are:
string - for any token which is not a string,

according to the tokenization rules
of S-expressions.

SexpString - for tokens of the form "..."
Sexp[] - for S-expressions that contain

sub-expressions (of the form
"(<s-expr1> ... <s-exprn>)")

*/
export default function parse(x: string): Sexp;

} 31/140

The S-Expression Type

The S-expression parser interprets all atomic
tokens according to Scheme’s lexical rules. In
particular, it encodes tokens of type string,

which are written as balanced double-quotes
"..." in a specific TypeScript type called

String (with capital-S, which is different from
the usual string). We call this token type a

SexpString in our type definition.

32/140

The S-Expression Type

The structure of the Sexp type is the usual
disjunction between Atomic tokens and

Compound expressions. Atomic tokens form
the base case of the inductive definition.

Compound expressions are encoded as arrays
of embedded expressions.

33/140

The S-Expression Type

We provide in src/shared/parser.ts
well-typed TypeScript parsers around the
third-party S-expression parser written in

JavaScript:

34/140

The S-Expression Type

import p, { Sexp, SexpString,
Token, CompoundSexp } from "s-expression";

import { makeFailure, makeOk, Result } from "./result";
import { isString,

isArray, isError } from "./type-predicates";
import { allT } from "./list";

35/140

The S-Expression Type

// s-expression returns strings quoted as "a" as [String: 'a'] objects
// to distinguish them from symbols - which are encoded as 'a'
// These are constructed using the new String("a") constructor
// and can be distinguished from regular strings based
// on the constructor.
const isSexpString = (x: any): x is SexpString =>

! isString(x) &&
x.constructor &&
x.constructor.name === "String";

export const isSexp = (x: any): x is Sexp =>
isToken(x) || isCompoundSexp(x);

export const isToken = (x: any): x is Token =>
isString(x) || isSexpString(x);

export const isCompoundSexp = (x: any): x is CompoundSexp =>
isArray(x) && allT(isSexp, x);

36/140

The S-Expression Type

const parse = (x: string): Result<Sexp> => {
const parsed = p(x);
return isError(parsed) ? makeFailure(parsed.message)

: makeOk(parsed);
}

37/140

Token Types

The relevant types of tokens must be
recognized by analyzing a Token value to
decide the type of literal value the token

represents (boolean, number or string). We use
the following TypeScript type predicates (using

the TypeScript type predicate notation
x is T). These definitions are provided in
src/shared/type-predicates.ts:

38/140

Token Types

// Type utilities
export const isArray = Array.isArray;
export const isString = (x: any): x is string =>

typeof x === "string";
export const isNumber = (x: any): x is number =>

typeof x === "number";
export const isBoolean = (x: any): x is boolean =>

typeof x === "boolean";
export const isError = (x: any): x is Error =>

x instanceof Error;

39/140

Token Types

// A weird method to check that a string
// is a string encoding of a number
export const isNumericString = (x: string): boolean =>

JSON.stringify(+x) === x;

40/140

Token Types

// A predicate for a valid identifier
// In Scheme, a valid identifier is a token that
// starts with an alphabetic letter (a-z or A-Z)
// followed by any number of letters or numbers.
// As discussed in the Section on Lexical Rules - we
// use Regular Expressions (regexp) to recognize these.
export type Identifier = string;
export const isIdentifier = (x: any): x is Identifier =>

/[A-Za-z][A-Za-z0-9]*/i.test(x);

41/140

Error Handling

The external s-expression parser library can fail
when it faces an illegal combination of

parentheses or ill-formed tokens. In this case,
it returns a value of type Error.

42/140

Error Handling

In the rest of the course, we will use a
functional approach to handle errors, based on
the Result<T> monad. Therefore, we wrap the

call to the library parser in a function that
adapts the Error protocol into a

Result<Sexp>:

43/140

Error Handling

const parse = (x: string): Result<Sexp> => {
const parsed = p(x);
return isError(parsed) ? makeFailure(parsed.message)

: makeOk(parsed);
}

44/140

Error Handling

The rest of the parser is structured to return
values of type Result<T>. Given this pattern,
we combine functions that return Result<T>

using the bind operator.

45/140

Error Handling

For example, instead of writing:
const parseL1 = (x: string): Program =>

parseL1Program(parse(x));

46/140

Error Handling

We write:
// combine Sexp parsing with L1 parsing using
// the bind operator
const parseL1 = (x: string): Result<Program> =>

bind(parse(x), parseL1Program);

47/140

Error Handling

The proper way to read a bind combination is:

• First invoke parse(x)
• If the returned value is of type Failure,
return this value without further processing.

• Else, the value is of type Ok<Sexp>, then
pass the wrapped Sexp value to the
function parseL1Program

48/140

Error Handling

In a bind call, the composed functions appear
in the order in which they are executed – first
parse, then parseL1Program. This is in

contrast with the traditional function
composition notation f(g(x)) where g is
executed before f but appears after it.

49/140

Error Handling

When using Result<T>, we avoid type
problems that would occur because of errors.
For example, if parse(x) were to return an
Error value, the composition would need to

be organized as follows:

50/140

Error Handling

const parse = (x: string): Sexp | Error => ...;
const parseL1Program = (s: Sexp): Program | Error => ...;

const parseL1 = (x: string): Program => {
const s = parse(x);
return isError(s) ? s :

parseL1Program(s);

51/140

Error Handling

If we read this code, error handling makes us
lose the intent that parseL1 is just a

composition of two functions.

This intent is preserved with the bind version:
bind is the composition operator for functions

that return Result<T> values.

52/140

Type Guards

The general structure of the parser functions is
to traverse an inductive data structure, and to
switch according to the type of the parameter.

53/140

Type Guards

In TypeScript, we use a switch code structure: to
make it functional, we use chained ternary
conditionals e1 ? e2 : e3 ? e4 : ...

which is an expression (as opposed to switch
or if else if which are statements).

54/140

Type Guards

We indent such chained ternary conditions in
the code to express clearly that they implement

a sequence of cases as in a switch.

55/140

Type Guards

The type of the parameters are disjoint unions
from the AST definitions. The clauses of the
switch are all type predicates. We call such

tests guards.

56/140

Type Guards

After a guard, the TypeScript type checker
knows that the parameter has the requested

type (because type predicates are defined with
a return type of the form x is T) and takes it
into account in the calls of the then part of the
if statement (we call this part of the code the

guarded clause).

57/140

Type Guards

For example, in parseL1Program, we receive
a parameter of type Sexp and traverse it using

the following switch pattern:

58/140

Type Guards

// <Program> -> (L1 <Exp>+)
export const parseL1Program = (sexp: Sexp): Result<Program> =>
sexp === "" || isEmpty(sexp) ?

makeFailure("Unexpected empty program") :
isToken(sexp) ?

makeFailure("Program cannot be a single token") :
isCompoundSexp(sexp) ?

parseL1GoodProgram(first(sexp), rest(sexp)) :
sexp;

59/140

Type Guards

As usual, the structure of this function follows
the structure of the type definition: an Sexp
value can be either an atomic Token or a

CompoundSexp. We deal with specific error
conditions by returning makeFailure values.

60/140

Parsing Atomic Expressions

In L1, atomic expressions can be either number,
boolean or primitive operators. All three are
encoded in concrete syntax as different types

of Tokens.

61/140

Parsing Atomic Expressions

Accordingly, the parser function that recognizes
atomic expressions enumerates the possible

types of tokens and constructs the appropriate
AST values for each possible option.

62/140

Parsing Atomic Expressions

// Atomic -> number | boolean | primitiveOp
export const parseL1Atomic = (token: Token): Result<CExp> =>

token === "#t" ? makeOk(makeBoolExp(true)) :
token === "#f" ? makeOk(makeBoolExp(false)) :
isString(token) && isNumericString(token) ?

makeOk(makeNumExp(+token)) :
isString(token) && isPrimitiveOp(token) ?

makeOk(makePrimOp(token)) :
isIdentifier(token) ? makeOk(makeVarRef(token)) :
makeFailure("Invalid atomic token: " + token);

export const isPrimitiveOp = (x: string): boolean =>
["+", "-", "*", "/", ">", "<", "=", "not"].includes(x)

63/140

Parsing Compound Expressions

In the syntax of L1, we distinguish between:

• compound expressions that can occur
embedded within other expressions (and
which we call constituent expressions, in
short CExp)

• and compound expressions that cannot be
embedded within other expressions, but
must occur at the toplevel of a program.
define-exp is the only such case in L1.

64/140

Parsing Compound Expressions

Accordingly, the parser must process compound
expressions depending on the context:

• At the toplevel of a program, one can expect
define-exp or c-exp expressions.

• Within other contexts, one can only expect
c-exp or atomic expressions.

65/140

Parsing Compound Expressions

Compound expressions in the concrete syntax
of Scheme-like languages are all Sexp arrays,
and they are recognized by checking the first
element in the array. This makes it easy to
check what is the type of a compound Sexp

given its concrete syntax.

66/140

Parsing Compound Expressions

The logic of the traversal of compound
expressions is captured in the following

functions.

67/140

Parsing Compound Expressions

// Exp -> <DefineExp> | <Cexp>
export const parseL1Exp = (sexp: Sexp): Result<Exp> =>

isEmpty(sexp) ?
makeFailure("Exp cannot be an empty list") :

isArray(sexp) ?
parseL1CompoundExp(first(sexp), rest(sexp)) :

isToken(sexp) ?
parseL1Atomic(sexp) :

sexp;

68/140

Parsing Compound Expressions

// Compound -> DefineExp | CompoundCExp
export const parseL1CompoundExp =

(op: Sexp, params: Sexp[]): Result<Exp> =>
op === "define"? parseDefine(params) :
parseL1CompoundCExp(op, params);

// CompoundCExp -> AppExp
export const parseL1CompoundCExp =

(op: Sexp, params: Sexp[]): Result<CExp> =>
parseAppExp(op, params);

69/140

Parsing Compound Expressions

// CExp -> AtomicExp | CompondCExp
export const parseL1CExp = (sexp: Sexp): Result<CExp> =>
isEmpty(sexp) ?

makeFailure("CExp cannot be an empty list") :
isArray(sexp) ?

parseL1CompoundCExp(first(sexp), rest(sexp)) :
isToken(sexp) ?

parseL1Atomic(sexp) :
sexp;

// AppExp -> (<cexp>+)
export const parseAppExp =
(op: Sexp, params: Sexp[]): Result<CExp> =>
safe2((rator: CExp, rands: CExp[]) =>

makeOk(makeAppExp(rator, rands)))
(parseL1CExp(op), mapResult(parseL1CExp, params));

70/140

Scoping and Binding of Variables

On the basis of the syntactic structure of
program expressions, one can specify formally

and precisely important properties of the
program. We start with an example of such
syntactic properties called variable binding.

71/140

Scoping and Binding of Variables

In Scheme as well as in JavaScript, Java and
many other languages, variables can occur in

two different ways in a program:

• As references
• As declarations

72/140

Scoping and Binding of Variables

A variable reference uses a variable - and refers
to its value. For example, in the expression
(+ 1 x), x refers to a value that was
previously attached to the variable.

73/140

Scoping and Binding of Variables

In contrast, a variable declaration defines a
new variable as an abstraction (a name) for a

value. For example, in Scheme, in the
expressions (lambda (x) ...) or

(let ((x ...)) ...), x is declared as a
new variable. In the lambda case, the value of
x will be provided when the function is invoked;
in the let case, the value of x is provided in
the binding location of the let-expression.

74/140

Scoping and Binding of Variables

Variable declarations usually have limited
scope, so that the same variable may be reused
in different places in the program. This means
that the name x in different locations of the

program may refer to different variables. In the
case of lambda and let, the declared

variables are visible only within the scope of
the body of the expressions.

75/140

Scoping and Binding of Variables

Programming languages come with rules which
determine how variable references relate to

variable declarations. These are called binding
rules.

76/140

Scoping and Binding of Variables

In Scheme, these rules are syntactic rules - that
is, the relation can be computed by analyzing
the AST of the program without executing it.

77/140

Scoping and Binding of Variables

Another way of saying this is that binding is a
static property as opposed to a dynamic
property which would depend on a specific

execution of the program.

78/140

Scoping and Binding of Variables

Static properties are defined through structural
induction - that is, they are defined for all

possible types of expressions by going over the
list of all possible expression types defined in

the abstract syntax of the language.

79/140

Binding Rules for Scheme

• In an expression
(lambda (<variable>) <body>) the
occurrence of <variable> is a declaration
that binds all occurrences of that variable in
<body> unless some intervening
declaration of the same variable occurs.

80/140

Binding Rules for Scheme

• In an expression
(let ((<variable> <value>)) <body>)
the occurrence of <variable> is a
declaration that binds all occurrences of
that variable in <body> unless some
intervening declaration of the same variable
occurs.

81/140

Free and Bound Variables

A variable x occurs free in an expression E if
and only if there is some use of x in E that is

not bound by any declaration of x in E.

82/140

Free and Bound Variables

A variable x occurs bound in an expression E if
and only if there is some use of x in E that is

bound by a declaration of x in E.

83/140

Free and Bound Variables

For example:

((lambda (x) x) y)

• x occurs bound
• y occurs free

84/140

Free and Bound Variables

For example:

(lambda (y)
((lambda (x) x) y))

• Now y occurs bound

85/140

Free and Bound Variables

The algorithm to determine whether a variable
occurs free in an expression is encoded as the
typical traversal of the AST, using the same

recipe as we used to compute the height of an
expression (Eheight): this is a structural
induction over the disjoint union types that

define the Scheme AST:

86/140

Free and Bound Variables

const occursFree = (v: string, e: Exp): boolean =>
isBoolExp(e) ? false :
isNumExp(e) ? false :
isStrExp(e) ? false :
isLitExp(e) ? false :
isVarRef(e) ? (v === e.var) :
isIfExp(e) ? occursFree(v, e.test) ||

occursFree(v, e.then) ||
occursFree(v, e.alt) :

isProcExp(e) ? ! (map((p) => p.var, e.args).includes(v)) &&
some((b) => occursFree(v, b), e.body) :

isPrimOp(e) ? false :
isAppExp(e) ? occursFree(v, e.rator) ||

some((rand) => occursFree(v, rand), e.rands) :
isDefineExp(e) ? (v !== e.var.var) && occursFree(v, e.val) :
false;

87/140

Collecting Variable References from an Expression

An extension of this algorithm consists of
collecting all the variables that are referenced

in a given expression.

88/140

Collecting Variable References from an Expression

export const referencedVars = (e: Program | Exp): VarRef[] =>
isBoolExp(e) ? Array<VarRef>() :
isNumExp(e) ? Array<VarRef>() :
isStrExp(e) ? Array<VarRef>() :
isLitExp(e) ? Array<VarRef>() :
isPrimOp(e) ? Array<VarRef>() :
isVarRef(e) ? [e] :
isIfExp(e) ? reduce(varRefUnion, Array<VarRef>(),

map(referencedVars, [e.test, e.then, e.alt])) :
isAppExp(e) ? union(referencedVars(e.rator),

reduce(varRefUnion, Array<VarRef>(),
map(referencedVars, e.rands))) :

isProcExp(e) ? reduce(varRefUnion,
Array<VarRef>(),
map(referencedVars, e.body)) :

isDefineExp(e) ? referencedVars(e.val) :
isProgram(e) ? reduce(varRefUnion,

Array<VarRef>(),
map(referencedVars, e.exps)) :

isLetExp(e) ? Array<VarRef>() : // TODO
Array<VarRef>(); 89/140

Collecting Variable References from an Expression

Note how the structure of this function, is again
a traversal of the AST according to the type

definition - this function has a structure almost
identical to any AST visitor.

By combining referencedVars and
occursFree we can obtain the list of variables

that occur free within an expression.

90/140

Distinguishing Variable Declaration and Variable References in
Abstract Syntax

Since we make a distinction between the two
positions of variables, we can change the

abstract syntax to represent variable
declarations and variable references as two

different data types.

91/140

Distinguishing Variable Declaration and Variable References in
Abstract Syntax

This is reflected in this updated BNF - where we
define the category <cexpLA> for “expression

with lexical address”:
<cexpLA> ::= <number> / num-exp(val:number)

| <boolean> / bool-exp(val:boolean)
| <string> / str-exp(val:string)
| (quote <sexp>) / literal-exp(val:sexp)
| <var-ref> / var-ref(var:string)
| (lambda (<var-decl>*) <cexpLA>+)

/ proc-expLA(params:List(var-decl), body:List(cexpLA))
| (if <cexpLA> <cexpLA> <cexpLA>)

/ if-expLA(test: cexpLA, then: cexpLA, else: cexpLA)
| (<cexpLA> <cexpLA>*)

/ app-expLA(rator:cexpLA, rands:List(cexpLA))

92/140

Distinguishing Variable Declaration and Variable References in
Abstract Syntax

The atomic expression types can be reused
from the previous AST definition (number,

boolean, string). Literal expressions are also
unchanged.

93/140

Distinguishing Variable Declaration and Variable References in
Abstract Syntax

We distinguish between <var-decl> and
<var-ref> as two distinct categories, which

are both mapped in concrete syntax to
identifiers. But the appropriate category is

selected based on the context of the identifier:
in the parameter list of a lambda-expression,
identifiers are interpreted as <var-decl>,

elsewhere, as <var-ref>.

94/140

Distinguishing Variable Declaration and Variable References in
Abstract Syntax

Compound expressions have the same
structure as in the original syntactic definition,
but refer to the new type <cexpLA> instead of

<cexp>.

95/140

Determining the Scope of Variable Declarations

In the lexically scoped language we are used to,
the same variable name can be used in

different scopes to refer to different variables.
For example:

((lambda (x) (* x x)) ; 1
((lambda (x) (+ x x)) ; 2
2))

The variable references in line 1 refer to the
declaration in the first lambda in line 1, and

those in line 2, to the second lambda
declaration in line 2. 96/140

Determining the Scope of Variable Declarations

(lambda (x y) ; 1
((lambda (x) (+ x y)) ; 2
(+ x x)) 1) ; 3

• The variable reference x in line 2 refers to
the declaration in line 2;

• The variable reference y in line 2 refers to
the declaration in line 1;

• The variable reference x in line 3 refers to
the declaration in line 1.

97/140

Determining the Scope of Variable Declarations

These relations between variable reference and
variable declarations are static properties -

they only depend on the syntactic structure of
the expression.

98/140

Lexical Address

One way to disambiguate variable references is
to replace them with their lexical address: the
lexical address determines in an unambiguous
manner the variable declaration to which a

variable reference is bound.

99/140

Lexical Address

To define lexical address it helps to define the
contour of a sub-expression within an
embedding expression: each time a new

declaration scoped is defined (using a lambda
or let expression in our language), a new
contour is defined. Contours are embedded
into each other. Contours correspond to the

scope of the declaration.

100/140

Lexical Address

To define lexical address it helps to define the
contour of a sub-expression within an
embedding expression: each time a new

declaration scoped is defined (using a lambda
or let expression in our language), a new
contour is defined. Contours are embedded
into each other. Contours correspond to the

scope of the declaration.

101/140

Lexical Address

In this example, there is a contour started at
line 1 with the lambda declaration, and a

second embedded contour in line 2.
(lambda (x y) ; 1
((lambda (x) (+ x y)) ; 2
(+ x x)) 1) ; 3

102/140

Lexical Address

Variable references can refer to the
declarations in the contours in which they

appear - starting from the inner declaration,
and looking outwards.

103/140

Lexical Address

For example, in line 2, the x reference looks up
to the declaration in the inner contour in line 2;

the y reference looks up to the external
declaration in the outer contour in line 1.

(lambda (x y) ; 1
((lambda (x) (+ x y)) ; 2
(+ x x)) 1) ; 3

104/140

Lexical Address

To indicate these relations, we define a lexical
address as a tuple [var : depth pos]

where:

• var is the name of the variable
• depth is the number of contours that are
crossed to reach the variable declaration

• pos is the offset of the variable within the
declaration.

105/140

Lexical Address

For example, the lexical addresses annotations
for the expression:

((lambda (x) (* x x)) ; 1
((lambda (x) (+ x x)) ; 2
2))

is:
((lambda (x) (* [x : 0 0] [x : 0 0])) ; 1
((lambda (x) (+ [x : 0 0] [x : 0 0])) ; 2
2))

106/140

Lexical Address

For example, the lexical addresses annotations
for the expression:

(lambda (x y) ; 1
((lambda (x) (+ x y)) ; 2
(+ x x)) 1) ; 3

is:
(lambda (x y) ; 1

((lambda (x) (+ [x : 0 0] [y : 1 1])) ; 2
(+ [x : 0 0] [x : 0 0])) 1) ; 3

107/140

Lexical Address

Note that the variable references + and * in
these examples are not bound to any

declaration. This is because they occur free in
the expression.

In this case, we annotate them as [var free]
as follows:

108/140

Lexical Address

((lambda (x) ([* free] [x : 0 0] [x : 0 0])) ; 1
((lambda (x) ([+ free] [x : 0 0] [x : 0 0])) ; 2
2))

109/140

Lexical Address

(lambda (x y) ; 1
((lambda (x) ([+ free] [x : 0 0] [y : 1 1])) ; 2
([+ free] [x : 0 0] [x : 0 0])) 1) ; 3

110/140

Computing the Lexical Address of Variable References

Since the relation between a variable reference
and its corresponding variable declaration is
unambiguous according to the syntax of the
language, we can design an algorithm which
computes the lexical address of all variable

references in an expression.

111/140

Computing the Lexical Address of Variable References

In order to design this algorithm, we must
consider how we perform the task of finding the
declaration that matches a variable reference.
The best way to visualize this process is to

observe the AST as a tree. When we traverse the
tree top-down, and reach a variable-reference

node - we are in a leaf-position (because
variable reference nodes have no constituent
sub-expressions - they are leaves in the AST).

112/140

Computing the Lexical Address of Variable References

To locate the corresponding declaration, we
must traverse the AST upwards from this

variable reference leaf, until we find a ProcExp
node. When we find this node, we check the
parameters list of the ProcExp and verify
whether the variable name occurs in the

parameters list. If it does, this is the declaration
that matches the variable reference.

113/140

Computing the Lexical Address of Variable References

We must also identify the position of the
variable name within the parameters - this

gives us a lexical address of
(<var> : 0 pos).

114/140

Computing the Lexical Address of Variable References

If the variable is not found in the parameters
list, we continue climbing up the tree - but each
time we cross a “contour” (that is, we cross a
ProcExp node), we increase the depth

parameter by one.

115/140

Computing the Lexical Address of Variable References

Another way to achieve this matching, if we
need to compute the lexical address of all
variable references is to traverse the AST
top-down and keeping track, each time we

traverse a contour (a ProcExp node) of the list
of visible variable declarations.

116/140

Computing the Lexical Address of Variable References

For example, in the expression:
(lambda (x y) ; 1
((lambda (x) ([+ free] [x : 0 0] [y : 1 1])) ; 2
([+ free] [x : 0 0] [x : 0 0])) 1) ; 3

We start at the top of the AST, the list of visible
variable declarations is empty. We then cross
the node (lambda (x y) ...) - the list is

now (x y). Any match we may find now will be
with depth 0. So we actually maintain a list of

lexical addresses:
([x : 0 0] [y : 0 1]) 117/140

Computing the Lexical Address of Variable References

(lambda (x y) ; 1
((lambda (x) ([+ free] [x : 0 0] [y : 1 1])) ; 2
([+ free] [x : 0 0] [x : 0 0])) 1) ; 3

We continue the traversal of the AST and reach
the contour (lambda (x) ...) in line 2. We

now update the list of visible variable
declarations to be ([x : 0 0]) which has

now priority, followed by
([x : 1 0] [y : 1 1]).

118/140

Computing the Lexical Address of Variable References

(lambda (x y) ; 1
((lambda (x) ([+ free] [x : 0 0] [y : 1 1])) ; 2
([+ free] [x : 0 0] [x : 0 0])) 1) ; 3

Meaning, we incremented the depth of the
visible variables - because in the scope of the
new contour, to reach x and y from the outer
declaration requires going “up to depth 1”

instead of 0.

119/140

Computing the Lexical Address of Variable References

(lambda (x y) ; 1
((lambda (x) ([+ free] [x : 0 0] [y : 1 1])) ; 2
([+ free] [x : 0 0] [x : 0 0])) 1) ; 3

This means that when we cross a contour, the
list of visible lexical addresses becomes
([x : 0 0] [x : 1 0] [y : 1 1]).
Note that this list is sorted by depth. In this
example, the first [x : 0 0] “hides” the
previous declaration [x : 1 0] - which is

what is expected.

120/140

Computing the Lexical Address of Variable References

Given this way of maintaining the list of visible
lexical addresses for accessible variable

declarations, we can define the algorithm to
retrieve the lexical address of a variable

reference.

121/140

Computing the Lexical Address of Variable References

We start with the definition of the types needed
to encode lexical addresses:

122/140

Computing the Lexical Address of Variable References

type LexAddress = FreeVar | LexicalAddress;
const isLexAddress = (x: any): x is LexAddress =>
isFreeVar(x) || isLexicalAddress(x);

123/140

Computing the Lexical Address of Variable References

interface FreeVar {
tag: "FreeVar";
var: string;

}
const isFreeVar = (x: any): x is FreeVar =>
typeof x === "object" && x.tag === "FreeVar";

const makeFreeVar = (v: string): FreeVar =>
({tag: "FreeVar", var: v});

124/140

Computing the Lexical Address of Variable References

interface LexicalAddress {
tag: "LexicalAddress";
var: string;
depth: number;
pos: number;

}
const isLexicalAddress = (x: any): x is LexicalAddress =>
typeof x === "object" && x.tag === "LexicalAddress";

const makeLexicalAddress =
(v: string, depth: number, pos: number): LexicalAddress =>
({tag: "LexicalAddress", var: v, depth: depth, pos: pos});

const makeDeeperLexicalAddress =
(la: LexicalAddress): LexicalAddress =>
makeLexicalAddress(la.var, la.depth + 1, la.pos);

125/140

Computing the Lexical Address of Variable References

The following procedure implements the
algorithm to retrieve the lexical address of a

variable reference:
const getLexicalAddress =
(v: VarRef, lexAddresses: LexAddress[]): LexAddress => {
const loop = (addresses: LexAddress[]): LexAddress =>

isEmpty(addresses) ? makeFreeVar(v.var) :
v.var === first(addresses).var ? first(addresses) :
loop(rest(addresses));

return loop(lexAddresses);
}

126/140

Computing the Lexical Address of Variable References

Note how we mark the variable as occurring
free when it is not found in any of the visible

declarations.

Observe how we implement iteration by
defining a local recursive procedure called

loop and invoke it inside the main body of the
procedure.

127/140

Traversing the Whole AST

The algorithm to compute the lexical address of
all variable references is thus implemented as

follows.

128/140

https://bguppl.github.io/interpreters/class_material/2.4SyntacticOperations.html#traversing-the-whole-ast

Traversing the Whole AST

The function is used as follows:

129/140

Traversing the Whole AST

const f = (s: string): Result<any> =>
bind(LA.parseLA(s),

(cexpla: LA.CExpLA) =>
bind(LA.addLexicalAddresses(cexpla),

(cexpla: LA.CExpLA) => makeOk(LA.unparseLA(cexpla))));

130/140

Traversing the Whole AST

f("(lambda (x) x)");
// => { tag: 'Ok',
// value: ["lambda", ["x"], ["x", ":", 0, 0]] }

f("(lambda (x) (lambda (y) (+ x y)))");
// => { tag: 'Ok',
// value: ["lambda", ["x"],
// ["lambda", ["y"],
// [["+", "free"],
// ["x", ":", 1, 0],
// ["y", ":", 0, 0]]]] }

131/140

Rewriting ASTs

Recall that we introduced the let-expression in
the previous lectures as a syntactic

abbreviation. This means that when we define
the operational semantics of the language, we
do not need to define a new computation rule
for this expression type, instead we indicate

that this expression is equivalent to a
combination of other syntactic constructs that

mean the same thing.

132/140

Rewriting ASTs

In the case of let the syntactic transformation
leading to a simpler equivalent construct is:

(let ((var1 val1) ...) body)

⇓

((lambda (var1 ...) body) val1 ...)

133/140

Rewriting ASTs

For example:

(let ((x 1) (y 2)) (+ x y))

⇓

((lambda (x y) (+ x y)) 1 2)

134/140

Rewriting ASTs

Such syntactic transformations are
implemented by mapping AST values containing
let-expressions to semantically equivalent AST
values that only contain lambda applications.

135/140

Rewriting ASTs

const rewriteLet = (e: LetExp): AppExp => {
const vars = map(b => b.var, e.bindings);
const vals = map(b => b.val, e.bindings);
return makeAppExp(makeProcExp(vars, e.body),

vals);
}

This definition only applies on a single
let-expression.

136/140

Rewriting ASTs

To perform the transformation at all levels
within an arbitrary expression, we must visit the
AST top-down and apply the transformation
wherever needed. This is implemented in this

function, which has the typical structural
induction structure of traversing all possible

AST values:

137/140

Rewriting ASTs

const rewriteAllLet = (exp: Program | Exp): Program | Exp =>
isExp(exp) ? rewriteAllLetExp(exp) :
isProgram(exp) ? makeProgram(map(rewriteAllLetExp, exp.exps)) :
exp;

const rewriteAllLetExp = (exp: Exp): Exp =>
isCExp(exp) ? rewriteAllLetCExp(exp) :
isDefineExp(exp) ? makeDefineExp(exp.var,

rewriteAllLetCExp(exp.val)) :
exp;

138/140

Rewriting ASTs

const rewriteAllLetCExp = (exp: CExp): CExp =>
isAtomicExp(exp) ? exp :
isLitExp(exp) ? exp :
isIfExp(exp) ? makeIfExp(rewriteAllLetCExp(exp.test),

rewriteAllLetCExp(exp.then),
rewriteAllLetCExp(exp.alt)) :

isAppExp(exp) ? makeAppExp(rewriteAllLetCExp(exp.rator),
map(rewriteAllLetCExp, exp.rands)) :

isProcExp(exp) ? makeProcExp(exp.args,
map(rewriteAllLetCExp, exp.body)) :

isLetExp(exp) ? rewriteAllLetCExp(rewriteLet(exp)) :
exp;

139/140

Rewriting ASTs

Observe how the same exact programming
pattern is used as for the case of computing

lexical addresses - in the form of a
transformation function for nodes of type

LetExp and a walker function which traverses
a complete AST from root to leaves and applies

a transformation to each node.

140/140

