
Principles of Programming Languages
Generators, Lazy Lists

1/102



Today

In this section, we continue our analysis of
control structures and the relation it has with
delayed computation. We first return to the

notion of coroutines, which we met in Section
4.1 in JavaScript, and attempt to simulate

coroutines in the programming language L5.

2/102



Today

We then refine our understanding of such
coroutines by describing them as an abstract
data type which involves closures as delayed
computations. We call this type a lazy list (also
known as streams). We present a programming
style based on lazy lists which has become

known as the functional reactive programming
paradigm.

3/102



Constructing Coroutines with Delayed Computation

Consider the following generator example in
JavaScript, using the language constructs of
function*, yield and the Iterator

interface with the IteratorResult data type:

4/102



Constructing Coroutines with Delayed Computation

function f1(n) { return n + 1; }
function f2(n) { return n + 2; }
function f3(n) { return n + 3; }

function* gen1(n) {
yield f1(n);
yield f2(n);
yield f3(n);

}

5/102



Constructing Coroutines with Delayed Computation

const g11 = gen1(0);
g11.next(); // { value: 1, done: false }
g11.next(); // { value: 2, done: false }
g11.next(); // { value: 3, done: false }
g11.next(); // { value: undefined, done: true }

6/102



Constructing Coroutines with Delayed Computation

Let us build a function which behaves in a
similar manner in L5.

7/102



Using (lambda () ...) to Delay Computation

The basis of the model is to use
(lambda () ...) to delay computation we
do not want to execute immediately. This is

similar to the way we proceeded when defining
the CPS approach: delayed computation is

wrapped in closures.

8/102



A Functional Version of Iterators

There are two ingredients to coroutines in
JavaScript:

• The Iterator interface and the
IteratorResult datatype

• The function* and yield mechanism

9/102



A Functional Version of Iterators

Let us model iterators in our functional
language L5.

10/102



A Functional Version of Iterators

An IteratorResult in JavaScript has two
fields: value and done.

interface IteratorResult<T> { value: T; done: boolean; }
interface Iterator<T> { next(): IteratorResult<T>; }

11/102



A Functional Version of Iterators

Through the usage of the method next(), we
understand that objects which implement the

Iterator interface are mutable.

12/102



A Functional Version of Iterators

For example, the state of the generator g11 in
the example above is updated, so that each

time we call g11.next() we obtain a different
value. Each time next() is invoked, the

generator advances to the next step of the
computation - and it stops before completing

the rest of the computation, until a new
next() invocation.

13/102



A Functional Version of Iterators

To adapt this mechanism to a functional
language, we must disentangle the mutation
from the aspect of delaying computation. We
thus define a data type for iterators which is
immutable. We adopt the general approach of
persistent mutable datatypes in Functional

Programming which we discussed in Section 1.4
with the Stack example.

14/102



A Functional Version of Iterators

The key ingredient of this approach is to define
each mutator function as a constructor. We
thus obtain an iterator data type with two

constructors: yield and next:

15/102



A Functional Version of Iterators

;; An iterator is either the "done" iterator or a pair with
;; the current value of the iterator and a continuation which
;; returns the next value of the iterator when evaluated.
;; Type Iterator<T> = done | Pair(T, [Empty -> Iterator<T>])

16/102



A Functional Version of Iterators

;; Purpose: The yield Iterator constructor takes 2 arguments:
;; - The value to return to the caller
;; - The continuation to be executed when the Iterator
;; is resumed (by invoking next())
;; Signature: yield(result, continuation)
;; Type: [T * [Empty -> Iterator<T>] -> Iterator<T>]
(define yield
(lambda (res cont)

(cons res cont)))

17/102



A Functional Version of Iterators

;; An iterator has 2 fields:
;; - Next: execute the next step of the computation of the
;; generator
;; - Value: access the current value of the generator
;; And a state predicate
;; - done?: determines whether the generator has reached
;; the end of the computation.

18/102



A Functional Version of Iterators

;; The accessors are iter->next, iter->value and iter->done?
;; iter->next computes the next step of the iterator.

19/102



A Functional Version of Iterators

;; Iter->next is a constructor - it returns the value of the
;; next iterator by invoking the continuation.
;; Once an iterator is done, next keeps returning done.
;; Else - next computes the next step of the iterator
;; by invoking the continuation.
(define iter->next
(lambda (iter)

(if (iter->done? iter)
iter
(let ((cont (cdr iter)))

(if (eq? cont 'done)
cont
(cont))))))

20/102



A Functional Version of Iterators

;; The value of a done iterator is 'done.
;; Else read it from the pair.
(define iter->value
(lambda (iter)

(if (iter->done? iter)
iter
(car iter))))

(define iter->done?
(lambda (iter)

(eq? iter 'done)))

21/102



Using the Iterator ADT to Construct a Generator in L5

Let us now use the iterator datatype we just
defined to implement in L5 the coroutine g2
which mimics the same behavior as g1 in

JavaScript.

The implementation is a bit unpleasant
because we need to explicitly add

(lambda () ...) to delay the next steps of
the computation after a yield.

22/102



Using the Iterator ADT to Construct a Generator in L5

(define f1
(lambda (n)

(print (+ n 1))
(+ n 1)))

(define f2
(lambda (n)

(print (+ n 2))
(+ n 2)))

(define f3
(lambda (n)

(print (+ n 3))
(+ n 3)))

23/102



Using the Iterator ADT to Construct a Generator in L5

;; Consider the following function g1
(define g1
(lambda (n)

(f1 n)
(f2 n)
(f3 n)))

;; Coroutine version of g1 with interruptions after
;; each sub-function
(define g2
(lambda (n)

(yield (f1 n)
(lambda ()
(yield (f2 n)

(lambda ()
(yield (f3 n)

'done)))))))
24/102



Using the Iterator ADT to Construct a Generator in L5

;; Invoke g2 and resume it
(let ((iter (g2 0)))
;; Iter is of the form (res . continuation)
(print (iter->value iter))
(iter->next iter))

;; 112'(2 . #<procedure:...c/coroutine1.rkt:101:20>)

25/102



Using the Iterator ADT to Construct a Generator in L5

The execution yields the following process:

26/102



Using the Iterator ADT to Construct a Generator in L5

• When (g2 0) is executed, we execute
(yield (f1 0) ...) - which as a
side-effect prints 1. The local variable iter
is now bound to the value returned by this
yield.

27/102



Using the Iterator ADT to Construct a Generator in L5

• We then print (iter->value iter)
which prints the current value of the
iterator, which is 1.

• We then resume the coroutine by invoking
(iter->next iter) - this executes
(yield 2 ...) - which as a side effect,
prints 2.

28/102



Using the Iterator ADT to Construct a Generator in L5

As was the case in JavaScript, we can use the
Iterator Abstract Data Type to model infinite

sequences.
(define integers
(lambda (from)

(letrec ((loop (lambda (n)
(yield n (lambda () (loop (+ n 1)))))))

(loop from))))

29/102



Consuming Generators

In JavaScript, we used the generalized loop
construct for x of gen to conveniently

consume the values produced by a generator.
Similarly, we define functions to ease the

consumption of L5 generators.

30/102



Consuming Generators

;; Purpose: add one item at the end of a list.
;; Type: [List(T) * T -> List(T)]
(define concat
(lambda (elts item)

(append elts (list item))))

31/102



Consuming Generators

;; Purpose: convert a finite iterator to a list.
;; Warning: would enter in an infinite loop on an
;; infinite generator.
;; Type: [Iterator(T) -> List(T)]
(define iter->list
(lambda (iter)

(letrec ((loop (lambda (iter res)
(if (iter->done? iter)

res
(loop (iter->next iter)

(concat res
(iter->value iter)))))))

(loop iter (list)))))

32/102



Consuming Generators

;; Purpose: return the first n elements generated
;; by an iterator as a list.
;; Type: [Iterator(T) * number -> List(T)]
;; Returns a list of up to n elements - can be less if
;; the generator is done before.
;; On a done iterator, returns an empty list.
(define iter->take

(lambda (iter n)
(letrec ((loop (lambda (iter n res)

(if (<= n 0)
res
(if (iter->done? iter)

res
(loop (iter->next iter)

(- n 1)
(concat res

(iter->value iter))))))))
(loop iter n (list)))))

33/102



Consuming Generators

;; Purpose: return an iterator that yields at most n elements
;; from another (possibly longer or infinite)
;; iterator.
;; Type: [Iterator(T) -> Iterator(T)]
(define iter->take*
(lambda (iter n)

(if (= n 0)
'done
(yield (iter->value iter)

(lambda ()
(iter->take* (iter->next iter)

(- n 1)))))))

34/102



Consuming Generators

With these functions, we can easily consume
elements from a generator:
(iter->list (g2 0))
;; '(1 2 3)

(iter->take (integers 0) 10)
;; '(0 1 2 3 4 5 6 7 8 9)

35/102



Higher-Order Generator Functions

One can refer to generators as lists in
comprehension, and accordingly define
higher-order functions similar to the

map/filter/reduce family we explored in
Chapter 1 for lists.

36/102



Higher-Order Generator Functions

;; Purpose: apply the procedure proc on each of the elements
;; of a generator. This consumes all the elements
;; of the generator.
;; Type: [(T1 -> T2) * Iterator(T1) -> Void]
(define iter->for-each
(lambda (proc iter)

(cond ((iter->done? iter) iter)
(else (proc (iter->value iter))

(iter->for-each proc (iter->next iter))))))

37/102



Higher-Order Generator Functions

;; Purpose: create a new generator returning (proc x)
;; for each item x generated by iter.
;; Type: [(T1 -> T2) * Iterator(T1) -> Iterator(T2)]
(define iter->map
(lambda (proc iter)

(if (iter->done? iter)
iter
(yield (proc (iter->value iter))

(lambda ()
(iter->map proc (iter->next iter)))))))

38/102



Higher-Order Generator Functions

iter->map constructs a new generator on the
basis of an existing one. The resulting

generator produces the same number of items
as the original one.

(iter->take (iter->map (lambda (x) (* x x)) (integers 0)) 10)
;; '(0 1 4 9 16 25 36 49 64 81)

(iter->for-each (lambda (i) (print i))
(iter->take* (integers 0) 10))

;; 0123456789'done

39/102



A Mutable Alternative Implementation of Generators

We could design a slight variant of the
generators abstract data type using mutation.
This gives a result which behaves in a manner

more similar to JavaScript generators.

40/102



A Mutable Alternative Implementation of Generators

The main idea of this model is that the next()
operation must now actually mutate the

generator. Hence, the generator must hold a
state - which remembers at any given stage the
current value and the continuation needed to

produce the next state.

41/102



A Mutable Alternative Implementation of Generators

The following function illustrates how we
obtain this behavior.

42/102



A Mutable Alternative Implementation of Generators

In this function, the make-generator
constructor creates a closure which

encapsulates the state of the generator - which
is a generator as described above. The closure
we construct exposes an interface for a 'next!
operation and a value accessor operation. The
client interfaces with the generator by sending
a message with the name of the operation it

wants to run.

43/102



A Mutable Alternative Implementation of Generators

(define make-generator
(lambda (thunk)

(let ((gen (yield 'init thunk)))
(lambda (op)

(cond ((eq? op 'next!)
(set! gen (iter->next gen))
(iter->value gen))

((eq? op 'value)
(iter->value gen))

(else (error "Unknown operation")))))))

44/102



A Mutable Alternative Implementation of Generators

;; Same as g1 with interruptions and resume with mutable generator
;; g3 behaves like the value of function* in JS
(define g3

(make-generator
(lambda ()

(yield (f1 n)
(lambda ()
(yield (f2 n)

(lambda ()
(yield (f3 n)

'done))))))))

45/102



A Mutable Alternative Implementation of Generators

(define gen (g3 0))
(gen 'next!) ;; 11
(gen 'next!) ;; 22
(gen 'value) ;; 2
(gen 'next!) ;; 33
(gen 'next!) ;; 'done

46/102



Lazy Lists Derivation as Abstract Data Types

We derived above the definition of Generators
in L5 by mimicking the behavior of coroutines

in JavaScript and attempting to derive a
functional implementation of coroutines using
delayed computation with (lambda () ...)

as the delaying operator and functional
mutable data structures.

47/102



Lazy Lists Derivation as Abstract Data Types

Let us revisit this derivation of functional
generators with one more model, based on type
analysis. We obtain an almost identical result -
the focus here is on describing generators as

sequences by describing their data type.

48/102



Reminder: The List Data Type in Scheme

We define the regular list data type through an
inductive type definition:

List(T) = Empty | Pair(T, List(T))

49/102



Reminder: The List Data Type in Scheme

This means that the set of all List(T) values
contains:

• The Empty list (which we write: '())
• Non-empty lists - which are made up of a
pair with a first element of type T and a
second element of type List(T).

50/102



Reminder: The List Data Type in Scheme

We define a functional interface on this data
type consisting a value constructor (cons), two
accessors (first and rest also known as car
and cdr) and two type predicates empty? and

list?.

51/102



Adapting the List Data Type to Lazy-Lists

We derive a similar type definition for lazy lists
– that is, lists whose first element is known and
the rest of the list is a delayed computation

which describes how to compute the rest of the
list.

52/102



Adapting the List Data Type to Lazy-Lists

The list is not built in extension by filling it in
memory with its items, but in comprehension
by describing which elements belong to the list

as a computation instead of listing the
elements that belong to the list.

53/102



Adapting the List Data Type to Lazy-Lists

To describe this idea as a data type definition,
we use the following type equation defining the
new Lzl data type (which stands for Lazy List):

Lzl(T) = Empty-Lzl | Pair(T, [Empty -> Lzl(T)])

54/102



Adapting the List Data Type to Lazy-Lists

In words, this means a value belongs to the
type Lzl(T) either if it is the empty lazy list

(Empty-Lzl) or if it is a pair with a first
element of type T and the second element is a
continuation, which when computed produces

a Lzl(T) value.

55/102



Adapting the List Data Type to Lazy-Lists

We derive from this type definition the
functional interface to manipulate values that

belong to the type:

56/102



Adapting the List Data Type to Lazy-Lists

;; The empty lazy list value (a singleton datatype)
(define empty-lzl '())

;; Purpose: Value constructor for non-empty lazy-list values
;; Type: [T * [Empty -> LZL(T)] -> LZT(T)]
(define cons-lzl cons)

;; Accessors
;; Type: [LZL(T) -> T]
;; Precondition: Input is non-empty
(define head car)

57/102



Adapting the List Data Type to Lazy-Lists

;; Type: [LZL(T) -> LZL(T)]
;; Precondition: Input is non-empty
;; Note that this *executes* the continuation
(define tail
(lambda (lzl)

((cdr lzl))))

;; Type predicate
(define empty-lzl? empty?)

58/102



Adapting the List Data Type to Lazy-Lists

This definition parallels that of regular lists - as
recursive data types defined inductively. The
only difference is that the tail of the list is
delayed by using a (lambda () ...)

wrapper.

59/102



Adapting the List Data Type to Lazy-Lists

Explore the behavior of these definitions on
simple values:

(define lzl1 empty-lzl)
(define lzl2 (cons-lzl 1 (lambda () lzl1)))
(define lzl3 (cons-lzl 2 (lambda () lzl2)))

(head lzl3) ;; 2
(tail lzl3) ;; '(1 . #<procedure>)
(head (tail lzl3)) ;; 1
(emptly-lzl? (tail (tail lzl3))) ;; #t

60/102



Adapting the List Data Type to Lazy-Lists

Because the tail of lazy lists is computed, we
can build inductively infinite sequences. In

contrast to regular recursive functions, lazy lists
can be defined inductively without a base case

to terminate the recursion.

61/102



Adapting the List Data Type to Lazy-Lists

;; Signature: integers-from(n)
;; Type: [number -> LZL(number)]
(define integers-from
(lambda (n)

(cons-lzl n (lambda () (integers-from (+ n 1))))))

(define ints (integers-from 0))
ints ;; '(0 . #<procedure>)

62/102



Manipulation of Lzl Values

To manipulate easily Lzl values, we define an
extended functional interface - which is
equivalent to the loops that we used in

JavaScript.

63/102



Manipulation of Lzl Values

;; Signature: take(lz-lst,n)
;; Type: [LzL * Number -> List]
;; If n > length(lz-lst) then the result
;; is lz-lst as a List
(define take
(lambda (lz-lst n)
(if (or (= n 0) (empty-lzl? lz-lst))

empty
(cons (head lz-lst)

(take (tail lz-lst) (- n 1))))))

64/102



Manipulation of Lzl Values

; Signature: nth(lz-lst,n)
;; Type: [LzL*Number -> T]
;; Pre-condition: n < length(lz-lst)
(define nth
(lambda (lz-lst n)
(if (= n 0)

(head lz-lst)
(nth (tail lz-lst) (- n 1)))))

65/102



Manipulation of Lzl Values

Observe that when we evaluate the following
calls, the successive steps of the expansion of

the integers-from lazy-list are repeated:
(take ints 10) ;; '(0 1 2 3 4 5 6 7 8 9)
(take ints 5) ;; '(0 1 2 3 4)

66/102



Computing with Lazy-Lists

Besides representing sequences in
comprehension, the model of lazy lists is a
useful abstraction to describe recursive

processes.

67/102



Computing with Lazy-Lists

Let us start with a simple idea: repeating a
value an unbounded number of times.

(define ones (cons-lzl 1 (lambda () ones)))

(take ones 7) ;; '(1 1 1 1 1 1 1)

68/102



Computing with Lazy-Lists

This computation is interesting because it is a
form of infinite loop which is controlled by the

caller.

69/102



Computing with Lazy-Lists

Let us now describe a list of values which are
built incrementally on top of each other. Let us

build the list of all factorial values.

70/102



Computing with Lazy-Lists

We start with a simple definition:
(define fact
(lambda (n)

(if (= n 1)
1
(* n (fact (- n 1))))))

;; Type: [Number -> LzL(Number)]
(define facts-from
(lambda (n)

(cons-lzl (fact n)
(lambda () (facts-from (+ n 1))))))

71/102



Computing with Lazy-Lists

When we observe the computation, we realize
though, that if we know the prefix of this

lazy-list, we can compute the next element in a
faster way than by invoking (fact (+ n 1))
- as long as we have access to the first element

when we compute the tail. We derive the
following pattern of lazy-list construction:

72/102



Computing with Lazy-Lists

(define facts-gen
(lambda ()

(letrec ((loop
(lambda (n fact-n)
(cons-lzl fact-n

(lambda () (loop (+ n 1)
(* (+ n 1) fact-n)))))))

(loop 1 1))))

(take (facts-gen) 6) ;; '(1 2 6 24 120 720)

73/102



Computing with Lazy-Lists

A good way to think about facts-gen is as the
unrolling of the fact computation. It returns

the list of the values of a recursive
computation. The structure of the function is
typical: the local function loop remembers the
last computed value fact-n and passes it to

the delayed computation in the tail.

74/102



Composition of Lazy Lists

Lazy list composition functions operate over
Lzl values and return new Lzl values.

75/102



Composition of Lazy Lists

Let us consider the lzl-add operator: given
two Lzl(number), it returns the Lzl of the

sum of their respective values.

76/102



Composition of Lazy Lists

;; Signature: lzl-add(lz1,lz2)
;; Type: [LzL(Number) * LzL(Number) -> LzL(number)]
(define lzl-add
(lambda (lz1 lz2)

(cond ((empty-lzl? lz1) lz2)
((empty-lzl? lz2) lz1)
(else (cons-lzl (+ (head lz1) (head lz2))

(lambda ()
(lzl-add (tail lz1) (tail lz2))))))))

77/102



Composition of Lazy Lists

This operator allows us to re-define the
sequence of integers using lazy-list addition:

(define integers
(cons-lzl 0

(lambda () (lzl-add ones integers))))

78/102



Composition of Lazy Lists

Similarly, let us define the sequence of
Fibonacci numbers using lazy-list addition:

(define fib-numbers
(cons-lzl 0

(lambda () (cons-lzl 1
(lambda ()
(lzl-add (tail fib-numbers)

fib-numbers))))))

79/102



Composition of Lazy Lists

What is remarkable about these definitions is
that they replace loops and recursive functions

(the inner functions loop in the examples
above) with recursive data flow: the

fib-numbers list is built incrementally from
the prefix of the fib-numbers list.

80/102



Append and Interleave of Lazy Lists

Recall the definition of the append function for
regular lists to return a list which contains all
the elements in l1 followed by those in l2:

;; Type: [List(T) * List(T) -> List(T)]
(define append
(lambda (l1 l2)

(if (empty? l1)
l2
(cons (car l1)

(append (cdr l1) l2)))))

81/102



Append and Interleave of Lazy Lists

Let us define a similar function for lazy lists:
;; Signature: lzl-append(lz1, lz2)
;; Type: [Lzl(T) * Lzl(T) -> Lzl(T)]
(define lzl-append
(lambda (lz1 lz2)

(if (empty-lzl? lz1)
lz2
(cons-lzl (head lz1)

(lambda ()
(lzl-append (tail lz1) lz2))))))

82/102



Append and Interleave of Lazy Lists

Observe the elements of the appended list: we
see that all elements of the first lazy-list come
before the second lazy-list. What if the first list
is infinite? There is no way to reach the second

list.

83/102



Append and Interleave of Lazy Lists

This version does not satisfy a fundamental
property of lazy-list functions: Every finite part
of a lazy-list “depends” on at most a finite part

of the lazy-list.

84/102



Append and Interleave of Lazy Lists

Therefore, when dealing with possibly infinite
lists, append is replaced by a different function

we call interleave(). interleave()
returns the elements of the lazy-lists in a way
that guarantees that every element of the
lazy-lists is reached within finite time:

85/102



Append and Interleave of Lazy Lists

;; Signature: interleave(lz1, lz2)
;; Type: [Lzl(T) *Lzl(T) -> Lzl(T)]
(define interleave
(lambda (lz1 lz2)

(if (empty-lzl? lz1)
lz2
(cons-lzl (head lz1)

(lambda () (interleave lz2 (tail lz1)))))))

(take (lzl-append (integers-from 100) fibs) 7)
;; '(100 101 102 103 104 105 106)

(take (interleave (integers-from 100) fibs) 7)
;; '(100 0 101 1 102 1 103)

86/102



Higher Order Lazy List Functions

Looking at Lzl values as sequences, it is
natural to adapt the sequence interface of

map/filter/reduce to this data type as well.
This perspective allows us to define interesting

data dependencies to capture recursive
relations in a compact way.

87/102



Higher Order Lazy List Functions

;; Signature: lzl-map(f, lz)
;; Type: [[T1 -> T2] * Lzl(T1) -> Lzl(T2)]
(define lzl-map
(lambda (f lzl)

(if (empty-lzl? lzl)
lzl
(cons-lzl (f (head lzl))

(lambda () (lzl-map f (tail lzl)))))))

(take (lzl-map (lambda (x) (* x x)) ints) 5)
;; '(0 1 4 9 16)

88/102



Higher Order Lazy List Functions

;; Signature: lzl-filter(p,lz)
;; Type: [[T1 -> Boolean] * Lzl(T1) -> LzL(T1)]
(define lzl-filter
(lambda (p lzl)

(cond ((empty-lzl? lzl) lzl)
((p (head lzl))
(cons-lzl (head lzl)

(lambda ()
(lzl-filter p (tail lzl)))))

(else (lzl-filter p (tail lzl))))))

89/102



Higher Order Lazy List Functions

Let us explore ways to define complex recursive
definitions using these higher-order functions.
We develop here a generator of the sequence
of prime numbers based on the sieve method:

90/102



Higher Order Lazy List Functions

(define divisible?
(lambda (x y)

(= (remainder x y) 0)))

(define no-sevens (lzl-filter (lambda (x)
(not (divisible? x 7))) ints))

(nth no-sevens 100) ;The 100th integer not divisible by 7:
;; 117

;; lazy-list scaling: return (c*x for x in lzl)
;; Signature: lzl-scale(c, lzl)
;; Type: [Number * Lzl(Number) -> Lzl(Number)]
(define lzl-scale
(lambda (c lzl)

(lzl-map (lambda (x) (* x c)) lzl)))

91/102



Higher Order Lazy List Functions

In a way similar to which we defined Fibonacci
numbers as a recursive equation involving the

fib-numbers sequence, we define the
generator of the powers of 2 as follows:

;; The lazy-list of powers of 2:
(define double
(cons-lzl 1 (lambda () (lzl-scale 2 double))))

(take double 7) ;; '(1 2 4 8 16 32 64)

92/102



Lazy List Iteration

Recall the integers lazy-list creation function:
(define integers-from
(lambda (n)

(cons-lzl n (lambda () (integers-from (+ n 1))))))

93/102



Lazy List Iteration

It can be re-written as follows, where we
explicitly abstract the step operation which

makes us proceed from one element in the list
to the next as the operation
(lambda (k) (+ k 1)):

(define integers-from
(lambda (n)

(cons-lzl n (lambda ()
(integers-from ((lambda (k) (+ k 1)) n))))))

94/102



Lazy List Iteration

A further generalization replaces the concrete
step function (lambda (k) (+ k 1)) by a

function parameter:
;; Signature: integers-iterate(f,n)
;; Type: [[Number -> Number] * Number -> Lzl(Number)]
(define integers-iterate
(lambda (f n)

(cons-lzl n (lambda () (integers-iterate f (f n))))))

95/102



Lazy List Iteration

(take (integers-iterate (lambda (k) (+ k 1)) 3) 7)
;; (3 4 5 6 7 8 9)

(take (integers-iterate (lambda (k) (* k 2)) 3) 7)
;; '(3 6 12 24 48 96 192)

(take (integers-iterate (lambda (k) k) 3) 7)
;; '(3 3 3 3 3 3 3)

96/102



Lazy List Iteration

Observe that this simple generalization of
integers covers the examples we defined
above of the repetition (ones), the simple
integers sequence, and the powers of two.

97/102



Lazy List Iteration

;; Primes – First definition
(define primes
(cons-lzl 2

(lambda ()
(lzl-filter prime? (integers-from 3)))))

(define prime?
(lambda (n)

(letrec ((iter (lambda (lz)
(cond ((> (sqr (head lz)) n) #t)

((divisible? n (head lz)) #f)
(else (iter (tail lz)))))))

(iter primes))))

(take primes 6)
;; '(2 3 5 7 11 13)

98/102



Lazy List Iteration

The second definition we present avoids the
redundancy of the computation above. It

implements the sieve algorithm. The lazy-list of
primes can be created as follows:

99/102



Lazy List Iteration

• Start with the integers lazy-list:
'(2 3 4 5 ...).

• Select the first prime: 2.
• Filter the current lazy-list from all multiples
of 2: '(3 5 7 9 ...)

• Select the next element on the list: 3

100/102



Lazy List Iteration

• Filter the current lazy-list from all multiples
of 3: '(5 7 11 13 ...).

• i-th step: Select the next element on the
list: k. Surely it is a prime, since it is not a
multiplication of any smaller integer.

• Filter the current lazy-list from all multiples
of k.

• All elements of the resulting lazy-list are
primes, and all primes are in the resulting
lazy-list.

101/102



Lazy List Iteration

;; Signature: sieve(lzl)
;; Type: [Lzl(Number) -> Lzl(Number)]
(define sieve

(lambda (lzl)
(cons-lzl (head lzl)

(lambda ()
(sieve (lzl-filter (lambda (x)

(not (divisible? x (head lzl))))
(tail lzl)))))))

(define primes1 (sieve (integers-from 2)))
(take primes1 7) ;; '(2 3 5 7 11 13 17)

102/102


