
Principles of Programming Languages
Semantics of Programming Languages and Types

1/138



Table of Contents

Operational Semantics of Programming Languages

Expressions vs. Values

Evaluation of Expressions into Values

Types in Programming Languages

Types with TypeScript

2/138



Operational Semantics of
Programming Languages



High-level Definition of Programming Languages Semantics

Semantics is the study of the meaning of
languages. The word meaning is complex and
we must specify what is meant by meaning of a

programming language.

3/138



High-level Definition of Programming Languages Semantics

A computer language is specified by two main
components:

• a (formal) syntax – describing the structure
of programs as they are written by
programmers.

• semantics – which describe the intended
meaning of programs.

4/138



High-level Definition of Programming Languages Semantics

Various tools manipulate programs (compilers,
interpreters, debuggers, IDEs, verification tools).
All of these tools must agree upon a formal
specification of what is expected when we

execute the program. The formal semantics of a
programming language provides an

unambiguous definition of what the execution
should achieve.

5/138



High-level Definition of Programming Languages Semantics

• People learning the language can
understand what each of the programming
language construct is expected to achieve.

6/138



High-level Definition of Programming Languages Semantics

• Implementers of tools for the language
(parsers, compilers, interpreters, debuggers,
etc) have a formal reference for their tool
and a formal definition of its
correctness/completeness.

7/138



High-level Definition of Programming Languages Semantics

• Two different programs in the language can
be proved formally as
equivalent/non-equivalent.

8/138



Semantic Domain

Formal semantics gives rules for translation
from one domain (usually the program’s

syntax) to another formally defined domain.

9/138



Semantic Domain

We adopt the Operational Semantics approach
which determines that: the meaning of an
expression in the programming language is

specified by the computation it induces when it
is executed on a machine.

10/138



Semantic Domain

The operational semantics of a programming
language tells us how to execute the program
step-by-step. When we follow this specification,
we record the steps and keep track of the state

of the computation as steps are executed.

11/138



Semantic Domain

The specification determines what is meant by
the state - in a first approximation, it can be the
list of defined variables and their value at each

step.

12/138



Semantic Domain

The result of the execution of a program
according to the semantic specification is a
derivation sequence which represents the

computation history. Each step in the
derivation indicates which part of the program
was executed, and the state that was reached

as a consequence.

13/138



Semantic Domain

Take as example an imperative programming
language with global variables and assignment
to variables. The state of the program holds the
list of defined variables and their values. The

program is a sequence of assignments:

14/138



Semantic Domain

Initial state: [x:5, y:3, z:7]
Program: "z = x; x = y; y = z;"

Step 1: execute "z=x;"
Remaining program: "x=y; y=z;"
New state: [x:5; y:3, z:5]

Step 2: execute "x=y;"
Remaining program: "y=z;"
New state: [x:3, y:3, z:5]

Step 3: execute "y=z;"
Remaining program: ""
New state: [x:3, y:5, z:5]

15/138



Semantic Domain

This result is the history of the computation - it
traces the steps of the execution into primitive

steps and the successive states of the
computation.

16/138



Semantic Domain

Note that it is an abstraction - it does not
provide all the details of what should happen

in a concrete computation on specific
hardware. For example, it does not mention
registers, translation to machine language,
encoding of data types. This computation

history is a formal mathematical object which
is in the semantic domain.

17/138



Semantic Domain

The rules of the semantics of the specific
programming language indicate how to select a
sub-expression to evaluate at each step of the
computation, and what are the effects on the
state of the computation each time a primitive

sub-expression is executed.

18/138



Semantic Domain

In summary, the operational semantics of the
language maps a program and an initial state
to a formal structure - we informally refer to

this structure as a computation history.

19/138



Operational Semantics of
Programming Languages

Expressions vs. Values



Statements

In imperative programs, programs are
constructed from statements. A statement is a

unit of program execution.

20/138



Statements

• Atomic statements such as variable
assignment or print-statements have a
single effect either on the world (screen is
updated, disk is updated, information is
sent in the network) or on the internal state
of the program.

21/138



Statements

• Compound statements are built from
multiple sub-statements. For example, an
if-then-else construct is used to build a
compound statement, or a for-loop
construct.

22/138



Statements

When a statement is executed, the state of the
program is modified.

23/138



Expressions

In contrast, in Functional Programming (FP),
programs are expressions.

24/138



Expressions

• Atomic expressions - for example, the
number expression -12 or the boolean
expression true or the variable expression
x.

25/138



Expressions

• Compound expressions - which are made up
of sub-expressions according to the syntax
of the language. For example the expression
12 >= 7 is a compound expression made
up of 3 sub-expressions, or
(12 === 13) ? -1 : 2 is also a
compound expression (called a conditional
expression).

26/138



Expressions

In FP, we do not execute an expression, but
instead we compute its value - a process we
call evaluation. The evaluation function maps

expressions to values.

27/138



Expressions

The operational semantics of an FP language
describes how the evaluation function operates
over all possible expressions in the language. It

is defined inductively over the syntactic
structure of expressions.

In the rest of the course, we will focus on
specifying the operational semantics of

functional languages.

28/138



Types of Expressions

The JavaScript language mixes both expressions
and statements - it is a multi-paradigm

language. This makes it difficult to describe
completely its operational semantics in a

concise manner. We will completely define a
smaller language in Chapter 2 - and only

provide an informal description for JavaScript.

29/138



Types of Expressions

• Atomic expressions:
number expressions (1, -12),
string expressions ("abc"),
boolean expressions (true, false).

30/138



Types of Expressions

• Compound expressions:
arithmetic expressions
(10 + v) * (w / 5),
relational expressions (x === 5),
ternary conditional expression
<condition> ? <expr1> : <expr2>.

31/138



Types of Expressions

• Variable bindings: these are expressions of
the form
let <var> = <expr1>; <expr2>
which define a block in which the variable
<var> is defined and bound to the value of
<expr1> and then evaluate the value of
<expr2>.

32/138



Types of Expressions

• Function invocation: of the form
f(<expr1>,...,<exprn>).

33/138



Types of Expressions

• Function definition: of the form
(<var1>,...) => <expr>.

34/138



Types of Expressions

The list of these expression types and their
structure defines the syntax of the

programming language. Note that we did not
include in this partial description the syntax of

statements in JavaScript.

35/138



Types of Expressions

Expressions are combined recursively to form
trees of compound expressions with atomic

expressions at the leaves. For example:

36/138



Types of Expressions

let v = 12;
(v >= 7) ? (v * 3) : 9

is a compound expression of type let, with 2
sub-expressions - a binding expression
v = 12 and a body expression which is a
conditional ternary expression; itself this
sub-expression has 3 sub-expressions.

37/138



Types of Values

Once an expression is evaluated by applying
the evaluation function, it becomes a value.
The evaluation function maps expressions to

values.

38/138



Types of Values

As we can distinguish types of expressions, we
can also characterize the set of all possible
values in an inductive manner - that is, start

from atomic values and then build up
compound values which are made up of

smaller value parts.

39/138



Types of Values

This lecture focuses on the characterization of
the domain of values in JavaScript.

40/138



Operational Semantics of
Programming Languages

Evaluation of Expressions into Values



Evaluation

The operational semantics of an FP language
define the evaluation function.

41/138



Evaluation

It determines how a top-level expression (the
program) is evaluated into a value. This
definition is inductive. For each syntactic

construct, an evaluation rule indicates how the
sub-expressions are evaluated - in which order.

42/138



Evaluation

At each step of the computation, a
sub-expression is evaluated and then

substituted by its value in the embedding
expression.

43/138



Evaluation

There may be a need to describe the state of
the computation during this evaluation process
- similar to the set of bindings var:value we

observed above when describing the
operational semantics of a very simple

imperative language.

44/138



Evaluation

The operations on this state will be quite
different from what we observed, as in pure FP
languages there is no need to perform variable
assignment (because variables are immutable).

45/138



Evaluation

The output of the operational semantics is a
computation history - but in this chapter we
will not describe the computation history - we
will only describe the values produced by the

evaluation function.

46/138



Evaluation Algorithm

Consider the complex expression we presented
above:

let v = 12;
(v >= 7) ? (v * 3) : 9

The evaluation algorithm consists of the
following steps: given an expression E:

47/138



Evaluation Algorithm

let v = 12;
(v >= 7) ? (v * 3) : 9

1. Identify the toplevel syntactic construct of E -
in our case a let construct.

48/138



Evaluation Algorithm

let v = 12;
(v >= 7) ? (v * 3) : 9

2. Identify the immediate sub-expressions of E
- in our case - the binding construct v = 12

and the body (rest of E).

49/138



Evaluation Algorithm

let v = 12;
(v >= 7) ? (v * 3) : 9

3. Perform the specific evaluation rule defined
for the construct of E - in this case - the

let-evaluation rule is:

50/138



Evaluation Algorithm

A. Compute the value of the <expr> on the
right-hand-side of the binding expression -
call it v1.

B. Add to the state of the computation the
binding {v:v1}.

C. Compute the value of the body
sub-expression - call it v2.

D. Remove the binding {v:v1} from the state
of the computation.

E. The value of the overall let construct is v2.
51/138



Evaluation Algorithm

This definition of the evaluation function is
recursive: in steps 3.A and 3.C - we invoked the

evaluation function recursively on
sub-expressions of E.

52/138



Evaluation Algorithm

The evaluation function refers to a state which
describes the set of known variables at every
single step of the computation, and the values

to which they are bound.

53/138



Evaluation Algorithm

This recursive definition must have a base case
to terminate. The base case of the recursion

consists of evaluating atomic expressions or to
invoke atomic primitive operators or functions.

For example:

54/138



Evaluation Algorithm

• The expression v is an atomic expression (it
has no sub-expressions); it is an expression
of type variable. The computation rule for
evaluating a variable is to lookup its value in
the current state of the computation. In our
case, the value of the expression v is 12.

55/138



Evaluation Algorithm

• The expression 7 is an atomic expression of
type number; The computation rule for
evaluating a number is to convert the way
numbers are written in the language into a
number value.

56/138



Evaluation Algorithm

• The expression (v >= 7) is a compound
expression of type relational
operator with a primitive atomic operator
(>=); The computation rule for evaluating a
relational operator is to (1) evaluate the left
side sub-expression (we obtain 12);
(2) evaluate the right-side sub-expression
(we obtain 7); (3) pass the 2 values to the
primitive comparison operator which must
return a boolean value (in this case true).

57/138



Evaluation Algorithm

A useful way to think about the evaluation of
complex expressions is in terms of reduction.
We want to evaluate the following expression,
which is a formula for computing the wage of a
worker given the number of hours she worked:

let hours = 45;
(hours <= 40) ? hours * 10 :
(hours > 40) ? (40 * 10) + ((hours - 40) * 15) :
0

58/138



Evaluation Algorithm

This formula in a more explicit form states that:

if (hours <= 40)
hours * 10

else if (hours > 40)
(40 * 10) + ((hours - 40) * 15)

else
0 // This should not happen.

59/138



Evaluation Algorithm

Let’s now see how this expression is reduced to
a value, using a step-by-step process:

60/138



Evaluation Algorithm

The first step is to substitute the hours
variable with 45:

(45 <= 40) ? 45 * 10 :
(45 > 40) ? (40 * 10) + ((45 - 40) * 15) :
0

61/138



Evaluation Algorithm

Next, the conditional part of the ternary
expression is evaluated, which in this case is

false.
false ? 45 * 10 :
(45 > 40) ? (40 * 10) + ((45 - 40) * 15) :
0

62/138



Evaluation Algorithm

Since the condition is false, the next branch is
tried. Note that at each step, a sub-expression

is evaluated and replaced by its value:
false ? 45 * 10 :
true ? (40 * 10) + ((45 - 40) * 15) :
0

63/138



Evaluation Algorithm

Since the condition is true, the expression
reduces to the body of that branch. After that,
it’s just arithmetic (but each step is done in a

specific order):
=> (40 * 10) + ((45 - 40) * 15)
=> 400 + (5 * 15)
=> 475

64/138



Evaluation Algorithm

This style of reduction is the best way to think
about the evaluation of complex expressions. It
is called a process of reduction - because the
complex expression is incrementally reduced

into a value.

65/138



Types in Programming Languages



Types of Values

In the same way as expressions can be atomic
or compound and built-up into complex
recursive programs, the values that are

generated by programs can be:

• atomic values: values which have no
“sub-components” - such as numbers or
booleans.

• compound values: values which are
constructed from sub-values, such as arrays
for example.

66/138



Types of Values

Compound values can be created in the
following manner:

• Constant literal values, e.g., [1, 2, 3]
denotes an array in JavaScript.

• Computed by primitive constructor
functions, e.g., [1].concat([12]) returns
a new array [1, 12].

• Deserialized from strings that represent
compound values according to a value
syntax.

67/138



Types of Values

NOTE 1: the capability to specify compound
values as literal constants is a characteristic of
dynamic languages such as JavaScript, Scheme
or Python. It is much more difficult to write
down compound values in languages such as
Java or C++. We will return to this important

distinction later.

68/138



Types of Values

NOTE 2: the distinction that a value is atomic
depends on a language design decision. For
example, strings in JavaScript are considered
atomic, while in C or C++ they are compound

(an array of characters).

69/138



Typed vs. Untyped Languages

As you have noted, JavaScript is an untyped
language - this means: when we declare

variables (using the let construct) or functions
(with the function or => constructs), we do

not specify the type of the variables or
parameters. We also do not need to specify the

type returned by the function.

70/138



Typed vs. Untyped Languages

This is in contrast to typed languages such as
Java and C++ - which require the programmer to
specify the type of all variables before they can

be defined or used.

71/138



Typed vs. Untyped Languages

Yet - even if variables are not declared with a
type in JavaScript, values in JavaScript do have
a type – they can be either number or string

or boolean or compound values.

72/138



Typed vs. Untyped Languages

Why would we want or not want to declare the
type of variables?

What are the benefits of each of the
approaches?

73/138



Typing Errors at Runtime

In the description of the evaluation function
above, we indicated that expressions are

traversed recursively, until atomic expressions
are evaluated (into numbers, booleans or

strings) and primitive operators or functions
are invoked (for example (v >= 7)).

74/138



Typing Errors at Runtime

When primitive operators or functions are
invoked - we can obtain errors at runtime
because the value which is passed to the

operator does not fit the type of the primitive
operator.

75/138



Typing Errors at Runtime

For example, in most languages, the evaluation
of (7 >= "a") or (8 + "b") would return
an error at runtime because the operators >=
and + do not know how to operate on a mixture
of numbers and strings. This will be the case in
Scheme for example as we will see in Chapter 2.

76/138



Typing Errors at Runtime

JavaScript primitives do not fail.
In JavaScript, the language designers took a
different approach: they made the primitive

operators extremely flexible and robust. So that
evaluations of strange expressions do not

trigger a runtime error - but instead do either
automatic conversions or return special values

indicating an impossible value.

77/138



Typing Errors at Runtime

"a" > 2 // => false
2 + "ab" // => "2ab"
"a" * 2 // => NaN
"a" && true // => true

78/138



Typing Errors at Runtime

This is a dubious decision - as such automatic
handling of unexpected variations is most often

a sign of poorly written code and produces
surprising results.

79/138



Typing Errors at Runtime

Accessors to Compound Values in JavaScript do
not Fail.

Another decision of the JavaScript designers
was to make access to compound values
“robust” against runtime errors as well:

• Accessing an index out of bounds in an
array returns the special value undefined

• Accessing an undefined key in a map
returns the special value undefined as well.

80/138



Typing Errors at Runtime

let arr = [1];
arr[4]; // => undefined
let map = { a: 1, b: 2 };
map.c; // => undefined

81/138



Typing Errors at Runtime

Undefined Variables in JavaScript do Fail.
Variables access, however, can fail: trying to

access an undefined variable raises an error at
runtime. When variable expressions are

evaluated, it may turn out that the variable is
not defined in the current state of the program

at the time its value is looked up.

82/138



Typing Errors at Runtime

let b = 2;
c; // => ReferenceError: c is not defined

83/138



Typing Errors at Runtime

Similarly, trying to access a key from an
undefined value triggers an error at runtime:

84/138



Typing Errors at Runtime

e.k; // => ReferenceError: e is not defined

85/138



Type Safety

Now that we have seen which errors can be
triggered when executing a JavaScript program -
and which surprising results may be returned
when we combine unexpected value types in
primitive operators invocations - we return to

our question:

• Can we avoid such errors and surprises?
• What are the benefits of declaring the types
of variables?

86/138



Type Safety

Type safety is the extent to which a
programming language discourages or

prevents type errors. A type error is erroneous
or undesirable program behaviour caused by a
discrepancy between differing data types for
the program’s constants, variables, and

methods (functions), e.g., treating an integer
(int) as a floating-point number (float).

87/138



Type Safety

Type enforcement can be either:

• static, catching potential errors at compile
time

• dynamic, associating type information with
values at run-time and consulting them as
needed to detect imminent errors

• a combination of both

88/138



Type Safety

In the context of static (compile-time) type
systems, type safety usually involves a
guarantee that the eventual value of any

expression will be a legitimate member of that
expression’s static type.

89/138



Type Safety

We will develop the notion of type safety
incrementally, after we discuss what are types.

90/138



Types of Values

A data type is a classification of data which
indicates what the programmer intends to do
with the data. Data types are defined along 2

aspects:

91/138



Types of Values

• Types correspond to sets of values - for
example, the type Boolean is the set of
values {true, false}; the type Number is the
(possibly infinite) set of numeric values.

92/138



Types of Values

• Types define the operations that can be
done on data values in the set. For example,
values of type Boolean can be computed
using logical operators such as and, or;
Number values can be manipulated with
operators +, * and compared with operators
such as <, >.

93/138



Types of Values

Types also determine how the interpreter reads
and writes the values, and how it stores the

values in memory.

94/138



Types of Values

When discussing types, it is important to
distinguish the type of a value and the type of

a variable:

95/138



Types of Values

• Values always have a type - that is, they
belong to a specific set of values. The
number 3 belongs to the set of number
values; the value true belongs to the set of
boolean values.

96/138



Types of Values

• Variables are parts of the programming
language expressions. They are bound to
values as the expressions are computed at
runtime. When a programmer declares that
a variable has a type - the meaning is that
we express the intent of the programmer
that this variable can only be bound to
values of this type during the lifecycle of
the variable. It states a constraint on the
variable usage.

97/138



Types of Values

In most typed languages, this constraint can be
checked at compile time: this is an extremely
strong result. It means that the compiler can at

compile time guarantee that all possible
executions of the program, with all possible
input values will satisfy the stated constraint.
This static verification (that is, a verification
performed at compile-time - without knowing

the value of the variables) is called type
checking.

98/138



Value Types

As mentioned, a value always has a type - this
simply states that a value belongs to a set of

values. For example, the value 1 belongs to the
set of values number - which means that the

value 1 has type number.

99/138



Value Types

In most cases, a value will have more than one
type: consider for example the case of

sub-types such as Integer and Number.
Integer as a set of values is a proper subset
of Number as a set of values. This means in
particular that a value like 6 belongs both to
the type Integer and to the type Number.

100/138



Value Types

A good type system helps programmers not
only declare the intended types of variables to

obtain type safety, it also helps the
programmer design the range of values the
program will process and produce. This is a

constructive process which helps structure the
set of all possible values in meaningful ways
and also document the domain upon which

programs operate.

101/138



Value Types

As we write more complex programs over more
complex data structures - we will feel more

strongly the benefit of describing precise data
types - which will also guide the structure of

the code we write to operate over them.

102/138



Types and Set Relations

Since types denote set of values, we can define
relations among types that are similar to set

relations:

103/138



Types and Set Relations

• Type T1 can be a subset of type T2: this
means any value of type T1 is also a value of
type T2. We also say that T1 is a subtype of
T2.

• Types T1 and T2 can be disjoint - meaning
there are no values that are both of type T1
and T2. For example, number and boolean
are disjoint.

104/138



Types and Set Relations

• One can define a universal type - which is
the type of all possible values. (This type is
exists in TypeScript and is called any).

• Some types denote finite sets (boolean
has 2 values), others are infinite (numbers,
strings).

105/138



Types and Set Relations

One can construct new types on the basis of
existing types:

• The union of T1 and T2 contains all the
values of T1 and T2 together.

• The intersection of T1 and T2.
• The cartesian product of T1 and T2 would be
the type that contains pairs of values (v1, v2)
such that v1 is of type T1 and v2 is of type T2.

106/138



Types and Set Relations

This last construction opens the door to
compound data types - that is, types which
contains values that have sub-components.

107/138



Types and Set Relations

We will see later that programmers can define
new types (user-defined types) on the basis of

primitive types (types provided by the
language) by using set theory operations like
Union, Intersection or Cartesian Product.

108/138



Types and Set Relations

Different languages offer various levels of
introspection (often called reflection) to enable
the analysis of the type of values at runtime, or

at interpretation/compile time.

109/138



Types and Set Relations

In JavaScript (the underlying language into
which TypeScript is translated), variables are

not typed, values have a type (which is encoded
in the binary representation of the values in
memory) and the typeof primitive operator
can be used to inspect the type of values at
runtime. Primitives in JavaScript use this
introspection mechanism to decide how to
operate on each combination of value types

they receive as parameters.
110/138



Types and Set Relations

In contrast, in Java and C/C++, primitive values
(non-object values such as integers, booleans,
characters, pointers and references) cannot be
inspected at runtime: values of different types
(for example a char, a boolean or an integer)
are encoded in binary format in RAM without
any distinctive sign that could be used at

runtime to determine that the value belongs to
different types.

111/138



Types with TypeScript



Basic Data Types

We now describe the basic data types
manipulated in TypeScript.

Typescript is a language built on top of
JavaScript: it adds optional type declarations to
variables (which do not exist in JavaScript). The
TypeScript compiler translates TypeScript into

JavaScript. During the translation, the
TypeScript compiler performs type checking -

which we will explain later.

112/138



Atomic Primitive Value Types

Simple values can have the following primitive
data types in TypeScript:

• Boolean: true, false
• Number: floating point numbers; 6, 6.1, -4,
0xf0a

• String: immutable sequences of characters,
"this is a string"

113/138



Atomic Primitive Value Types

console.log(typeof 6) // => number
console.log(typeof true) // => boolean
console.log(typeof "a") // => string

114/138



Atomic Primitive Value Types

There are two special value types that are not
useful on their own - but will play an important

role when we start building more complex
types:

• null: this is a type that contains only the
special value null

• undefined: this is a type that contains only
the special value undefined

115/138



Atomic Primitive Value Types

undefined plays a special role in the lifecycle
of variables. We will return to this when we
discuss the types of variables (as opposed to

the type of values which are we now reviewing).

116/138



Atomic Primitive Value Types

console.log(typeof null) // => object
console.log(typeof undefined) // => undefined

117/138



Compound Value Types

In contrast to atomic values, one can also
define compound values - which are values
that are built from multiple parts. There are
two basic compound types in TypeScript:

• Arrays – [1, 2, 3]
• Maps – { name: "Ben", age: 31 }

118/138



Compound Value Types

Any value that is not an atomic value is a
compound value - which is called in JavaScript

an object value.

119/138



Compound Value Types

console.log(typeof [1, 2, 3]) // => object
console.log(typeof {a: 1, b: 2}) // => object

120/138



Compound Value Types

Notice that the primitive typeof operator is
limited in its capability to distinguish the types
of values, even if they are very different. We will

see later that TypeScript improves on this
operator tremendously.

More specific reflection operators allow finer
distinction in the types of values, for example:

121/138



Compound Value Types

console.log([1, 2, 3] instanceof Array)
// => true
console.log({a: 1, b: 2} instanceof Array)
// => false

122/138



Compound Value Types

Compound values can be entered as constant
literals (as above) or can be constructed by
invoking the appropriate constructors and
mutators (functions which incrementally

change a value). For example:

123/138



Compound Value Types

Array(1, 2, 3) // => [1, 2, 3]

let map = {};
map.a = 1;
map.b = 2;
console.log(map); // => { a: 1, b: 2 }

124/138



Compound Value Getters

Compound values can be “put apart” by using
getters - for arrays, using indexes which refer to
the positions of the items within the array, and
for maps using key values. In addition, the

slice() method of arrays can return a range
of values from within the array:

125/138



Compound Value Getters

let arr = ["a", "b", "c", "d", "e"];
console.log(arr[0]);
// => "a"
console.log(arr.slice(1));
// => ["b", "c", "d", "e"]
console.log(arr.slice(1, 4));
// => ["b", "c", "d"]

126/138



Compound Value Getters

Maps are collections of pairs (key, value).

Map getters use the key to access the value.

Alternatively, the dot notation m.k can be used
when the key is a string without spaces.

127/138



Compound Value Getters

let m = { a: 1, b: 2 };
console.log(m["a"]); // => 1
console.log(m.a); // => 1

128/138



Compound Value Getters

The method Object.keys(x) returns the list
of the keys which are defined for any

compound values. It operates both on arrays
(the keys are the indexes) and on maps.

129/138



Compound Value Getters

let arr = ["a", "b", "c"];
let map = { a: 1, b: 2 };
console.log(Object.keys(arr));
// => ["0", "1", "2"]
console.log(Object.keys(map));
// => ["a", "b"]

130/138



Compound Value Getters

Alternatively, one can use the generalized for
loops over arrays and maps:

131/138



Compound Value Getters

for (let k in map) {
console.log(`${k} has value ${map[k]}`);

}

for (let k in arr) {
console.log(`${k} has value ${arr[k]}`);

}

/* a has value 1
b has value 2
0 has value a
1 has value b
2 has value c */

132/138



Variable Types in TypeScript: Gradual Typing

In static languages like C++ and Java, variables
must be typed - that is, when a variable is
defined, its type must be declared by the

programmer.

In dynamically typed languages like JavaScript
and Scheme, variables are not typed. But when
a variable is bound to a value, we can inspect
its type at runtime (because values are always

typed).

133/138



Variable Types in TypeScript: Gradual Typing

TypeScript extends JavaScript and introduces
optional variable types. TypeScript is compiled
into JavaScript - and at compilation time, type
checking is performed. There is no additional
type checking happening at runtime after

compilation has completed.

Typing annotations can be introduced gradually
as code matures.

134/138



Variable Types in TypeScript: Gradual Typing

Typing a variable means that the programmer
declares how she intends to use the variable -
which values it can be bound to. In TypeScript,
this is performed by adding a type annotation

to variable declarations:

let n: number = 6;
let s: string = "hello";
let b: boolean = true;

135/138



Literal Expressions in Programming Languages

In general, programming languages provide
ways to specify values as part of expressions.

Literal expressions are the syntactic
representation of values that appear as part of

expressions.

136/138



Literal Expressions in Programming Languages

Examples of literal expressions in TypeScript:

1
"hello"

[1, 2, 3]
{ a: 1, b: 2}

[{ c: 3}, { d: 4}]

137/138



Literal Expressions in Programming Languages

Distinguish between literal expressions and the
values they represent:

• Literal expressions are part of the syntax of
a programming language; they are
evaluated.

• Values are the result of the evaluation; they
are part of the semantics of the language.

138/138


	Operational Semantics of Programming Languages
	Expressions vs. Values
	Evaluation of Expressions into Values

	Types in Programming Languages
	Types with TypeScript

