
Principles of Programming Languages
Type Checking

1/151

Type Safety

We return in this Chapter to the issue of type
safety that was presented informally in Chapter

1 when we introduced the type system of
TypeScript. We investigate how we can analyze

programs to verify they are type safe.

2/151

Type Safety

An attempt to apply a procedure to
inappropriate data is a type error.

3/151

Type Safety

We develop techniques to analyze programs so
that we can ensure they are type safe - that is,
if we compute them, on any possible input

values, we do not reach type errors.

4/151

Type Safety

In order to support type checking, we will
extend our language with type annotations - in
the same way as TypeScript extends JavaScript.

5/151

Type Safety

Given a program with annotations such as:

(define f
(lambda ((n : number)) : number
(+ n 3)))

(f 'x) ;; => Type error:
;; 'x is not a number

6/151

Type Safety

We proceed in two stages:

7/151

Type Safety

• We first analyze programs that include full
type annotations and verify that they satisfy
their type declarations.

8/151

Type Safety

• We then analyze programs that include
partial type annotations (and possibly no
annotations at all) and infer the types of all
variable declarations and functions, and
check that the program is type safe.

9/151

Type Safety and Program Correctness

Contracts of programs provide specification for
their most important properties:

• Signature
• Type preconditions and postconditions

Contracts say nothing about the specifics of the
implementation (such as performance, concrete
data structures used in the implementation).

10/151

Type Safety and Program Correctness

Proving program correctness consists in
proving that a program implementation

satisfies its contract. Type safety is one of the
conditions we must check to prove correctness:

1. Type correctness: Check well-typing of all
expressions, and possibly infer missing
types.

2. Program verification: Show that if
preconditions hold, then the program
terminates, and the postconditions hold.

11/151

Type Safety and Program Correctness

Program correctness can be checked either
statically or dynamically.

12/151

Type Safety and Program Correctness

In static program correctness the program text
is analyzed without running it. Static program
analysis reveals problems that characterize the

program independently of specific data.

13/151

Type Safety and Program Correctness

Static type checking verifies that the program
will not encounter runtime errors due to type
mismatch problems. In dynamic program

analysis, problems are detected by running the
program on specific data.

14/151

Type Safety and Program Correctness

Static correctness methods are strong because
they analyze the program as a whole, and

evaluate properties that hold for all possible
applications on all possible data values.

Dynamic correctness methods, like unit testing,
are complementary to the static ones.

15/151

Types

Let us recall the meaning of types we adopt:

16/151

Types

The semantics of a programming language
defines types as subsets of the domain of

computed values That is, values are split into
subsets, termed types, that collect together
values of a similar kind and which can be

passed to similar functions.

17/151

Types

In the Scheme subset that we have defined up
to L4 - computed values are the union of the

disjoint types Numbers, Booleans,
S-expressions, Closures, Primitive operators

and Void.

18/151

Types

The set of closures is defined inductively as
mappings from tuples to values - where tuples
are cartesian products of values - starting from
the empty tuple, tuples of a single value, two

values etc.

19/151

Types

Most programming languages admit fully typed
semantics, i.e., every computed value belongs

to a known type.

20/151

Type Systems

The semantics of a programming language
defines a type system: it determines which
types exist across the domain of computed

values, how new types can be defined (through
the usage of type constructors - such as List or
Procedures or Union) and the possible relations

among types (one type may be included in
another, two types may be disjoint or overlap).

21/151

Type Systems

The basis of type systems is the principle of
substitutability: two types A and B “match”
when values of one can be used in place of

values of the other. Therefore, the design of a
type system determines when substitutions are

safe.

22/151

Type Systems

The simplest form of substitutability is identity:
a type can only be substituted with itself, and
nothing else. For instance, if the declared type
of a function’s parameter is Number, then you
can only call it with Number-typed values,

nothing else. This is known as invariance: the
set of values that can be passed into a function
cannot vary from the set expected by that type.

23/151

Type Systems

This is so obvious that it might seem to hardly
warrant a name - however, it is useful to name
this because it sets up a contrast with more
complex type systems when richer, non-trivial

notions of substitutability exist (think of
Subtyping in Object Oriented systems and the

usage of Interfaces).

24/151

Soundness

The key property of a type system is a set of
rules which determine whether a given

expression in the language is type safe - that is,
whether the evaluation of this expression will

never lead to type errors.

25/151

Soundness

Type safety is achieved by defining an analysis
method called type checking. The goal of type
checking is to verify that if an expression E is
assigned type T, then, whenever E is computed,
its value will be of type T. If the type system
has this property, we say that it is sound.

26/151

Soundness

Note that type checking does not guarantee
that the program will always terminate (that
would be a strong guarantee equivalent to

solving the Halting Problem) nor that it will not
throw any exceptions, such as divide by 0. It
only guarantees that the program when it is

evaluated to a proper value will not throw type
errors and will return a value in the predicted

type.

27/151

Type Errors

The type checker inspects every application
node in the AST of a program E. Each operand
in an application is an expression of some type
(which is verified inductively). Therefore, we
know that the value of the operand will be of

that type.

28/151

Type Errors

If the operands are not of the type expected by
the operator of the application, we say that this

operator invocation (i.e., this application
expression node in the AST) is a potential type

error.

29/151

Type Errors

If type errors are detected, the type checker can
take some actions, which is also part of the
language design. It can refuse to execute or
compile the program, or it can take corrective

measures (like type casting).

30/151

Associating Expressions with Types

Type checking and type inference require
associating program expressions with types.

31/151

Associating Expressions with Types

In order to achieve this, we need to define two
syntactic extensions to our language:

• Define a type language to specify type
expressions.

• Define a way in the language to associate
variables and procedures to type
expressions.

32/151

Associating Expressions with Types

The extension of a language with type
expressions is exactly what we observed in the

transition from JavaScript to TypeScript.
TypeScript defines a way to specify type
expressions (primitive types like Number,

Boolean, String and compound types such as
maps, arrays and functions, or type unions).

33/151

Associating Expressions with Types

Similarly, we will define a new language, L5
which extends L4 by allowing the specification

of type annotations.

34/151

Type Language

We start with a definition of the type language.
We actually already used this type language
when we introduced Scheme. In the code we

wrote in Scheme, we added type annotations as
part of the contract section of functions, under

the type annotation.

35/151

Type Language

Because we did not want to extend the
language, we kept these annotations as
comments in Scheme, as in the following

example:

;; Purpose: Identity
;; Signature: id(x)
;; Type: [T -> T]
(define id

(lambda (x) x))

36/151

Type Language

Since we now know how to define our own
language, we will add type annotations as part

of the language L5.

37/151

Type Language

The possible type expressions we will consider
are defined by the following syntax:

38/151

Type Language

<texp> ::= <atomic-te> | <composite-te> | <tvar>
<atomic-te> ::= <num-te> | <bool-te> | <void-te>
<num-te> ::= number // num-te()
<bool-te> ::= boolean // bool-te()
<str-te> ::= string // str-te()
<void-te> ::= void // void-te()
<composite-te> ::= <proc-te> | <tuple-te>
<non-tuple-te> ::= <atomic-te> | <proc-te> | <tvar>
<proc-te> ::= [<tuple-te> -> <non-tuple-te>]

// proc-te(param-tes: list(te), return-te: te)
<tuple-te> ::= <non-empty-tuple-te> | <empty-te>
<non-empty-tuple-te> ::= (<non-tuple-te> *)* <non-tuple-te>

// tuple-te(tes: list(te))
<empty-te> ::= Empty
<tvar> ::= a symbol starting with T // tvar(id: Symbol)

39/151

Type Language

The following are all examples of legal type
expressions according to this syntax:

number
boolean
void

(number -> boolean)
(number * number -> boolean)

(number -> (number -> boolean))
(Empty -> number)
(Empty -> void)

(T1 -> T1)

40/151

Type Annotations

We then define a way to add type annotations
to expressions.

41/151

Type Annotations

Where are type annotations needed within
programs?

42/151

Type Annotations

They can occur in only two specific places:

• As part of a variable declaration
• As part of a procedure expression to specify
the expected return type

43/151

Type Annotations

Accordingly, we extend the syntax of L4 with
type annotations in exactly those two

expression types - these two changes are
marked with #### L5 below:

44/151

Type Annotations

45/151

Type Annotations

With this new syntax (heavily inspired by the
TypeScript syntax), the following programs are

fully annotated L5 programs:

46/151

Type Annotations

(define (x : number) 5)

(define (f : (number -> number))
(lambda ((x : number)) : number

(* x x))

(define (f : (number * number -> number))
(lambda ((x : number) (y : number)) : number
(* x y))

47/151

Type Annotations

(let (((a : number) 1)
((b : boolean) #t))

(if b a (+ a 1)))

(letrec (((a : (number -> number))
(lambda ((x : number)) : number

(* x x))))
(a 3))

(define (id : (T1 -> T1))
(lambda ((x : T1)) : T1

x))

48/151

Type Annotations

We defined type annotations as optional - so
that the following programs are also legal

expressions in L5: no type annotation on f and
on return value of lambda:

(define f
(lambda ((x : number))
(* x x)))

(let ((a 1)) (+ a a))

49/151

Type Annotations

The implementation of this syntax definition is
available on GitHub in the files:

• src/L5/TExp.ts
• src/L5/L5-ast.ts

50/151

Type Annotations

In includes the following functions:

• parseTE takes a string representing a
concrete type expression and returns a TExp
AST.

• unparseTExp takes a TExp AST and returns
the concrete string of the AST

• parseL5 takes a string representing an
L5 program and returns an L5 Program AST.

• unparse takes an Exp | Program AST
and returns the concrete string of the AST.

51/151

Type Annotations

Type expression ASTs look as shown in these
examples:

it('parses atoms', () => {
expect(parseTE("number")).to.deep.equal(makeOk(makeNumTExp()));
expect(parseTE("boolean")).to.deep.equal(makeOk(makeBoolTExp()));

});

it('parses type variables', () => {
expect(parseTE("T1")).to.deep.equal(makeOk(makeTVar("T1")));

});

52/151

Type Annotations

Type expression ASTs look as shown in these
examples:

it('parses procedures', () => {
expect(parseTE("(T * T -> boolean)"))
.to.deep.equal(makeOk(
makeProcTExp([makeTVar("T"), makeTVar("T")], makeBoolTExp())));

expect(parseTE("(number -> (number -> number))"))
.to.deep.equal(makeOk(
makeProcTExp([makeNumTExp()],

makeProcTExp([makeNumTExp()], makeNumTExp()))));
});

it('parses "void" and "Empty"', () => {
expect(parseTE("void")).to.deep.equal(makeOk(makeVoidTExp()));

expect(parseTE("(Empty -> void)"))
.to.deep.equal(makeOk(makeProcTExp([], makeVoidTExp())));

});
53/151

Type Annotations

Note the following two points about the syntax
of type expressions:

• At this point, we only support atomic type
expressions (number, boolean, void) or
procedure type expressions
(number -> number) - and not
composite types such as List(number).

• Type variables are used to represent the
case of polymorphic functions such as
[T -> T] for the identity function.

54/151

Annotated ASTs

ASTs with type annotations look as in the
following examples:

55/151

Annotated ASTs

const p = (x: string): Result<Exp> =>
bind(parseSexp(x), parseL5Exp);

expect(p("(define (a : number) 1)"))
.to.deep.equal(makeOk(

makeDefineExp(makeVarDecl("a", makeNumTExp()),
makeNumExp(1))));

expect(p("(lambda ((x : number)) : number x)"))
.to.deep.equal(makeOk(

makeProcExp([makeVarDecl("x", makeNumTExp())],
[makeVarRef("x")],
makeNumTExp())));

56/151

Type Analysis Algorithm

We develop an algorithm which operates over
an annotated AST expression of L5 (the AST of
the language with full type annotations for all
VarDecl nodes and all procedures), and

verifies that the expression is type safe and will
return its verified type. This algorithm is a type

checker.

57/151

Type Analysis Algorithm

The specific errors we will detect are the
following:

• An attempt to apply a value which is neither
a primitive nor a closure in an application
expression.

• An attempt to apply a procedure or a
primitive operator to the wrong number of
arguments.

58/151

Type Analysis Algorithm

The specific errors we will detect are the
following:

• An attempt to apply primitives to wrong
type of arguments (for example, + to a
non-number value)

• An attempt to use a non-boolean
expression as the test in an if-expression.

59/151

Type Analysis Algorithm

Note that we do not try to check for other types
of errors - such as divide by zero or, if we had
lists or arrays, reference to an index of bounds

in the list or the array.

60/151

Type Analysis Algorithm

We design this algorithm as a function
typeofExp which given an expression will

traverse the expression (the AST) and verify all
the nodes in the AST for type correctness, and
return the type the expression is expected to
return. That is, we first expect the function
typeofExp to have the following type:

typeofExp: Exp -> TExp

61/151

Type of Atomic Expressions

It is easy to think of how this function will work
for simple expression types:

typeofExp(<NumExp val>) -> NumTExp
That is, the type of an AST node of the form
<NumExp val> is Number. Similarly for

booleans and strings.

62/151

Type Environment

We then must decide what should be the type
of an expression which only consists of a
VarRef - that is a reference to a variable.

63/151

Type Environment

Obviously, this depends on the context of the
variable - since the same variable name in

different contexts will yield different answers.
We must, therefore, extend the signature of the

typeofExp operation to accept as an
additional parameter the assumptions we make

about the type of variables in our program.

64/151

Type Environment

We had exactly the same issue when we
defined the operational semantics in Chapter 2.

In order to compute the value of variables
(even in the simplest model L1), we introduced
an environment which keeps track of what we

know about variables.

65/151

Type Environment

In a similar manner, we define type
environments as a way to keep track of what we

know about the type of variables in the
program. As usual, we define the type
environment in an inductive manner:

66/151

Type Environment

Definition: Type Environment
A type environment is a substitution of
language variables to type expressions, i.e., a
mapping of a finite set of variables to type
expressions. It is denoted as a set of variable
type assumptions.

67/151

Type Environment

Definition: Type Environment
For example:

{x: number, y: (number -> T1)}

In this type environment, the variable x is
mapped to the Number type, and the variable
y is mapped to the polymorphic procedure
type (number –> T).

68/151

Type Environment

The type of a variable v with respect to a type
environment TEnv is denoted TEnv(v)

(or applyTEnv(TEnv, v)).

69/151

Type Environment

1. The empty type environment, denoted {},
indicates that we make no assumptions
about the types of variables.

2. Extending a type environment: we construct
new type environments by combining new
assumptions about variable-type mappings
with another existing type environment.
Formally, this is achieved by composing
substitutions.

70/151

Type Environment

For example, if we combine the type
assumption about the type of variable z:

{z: boolean} with the substitution above,
we obtain:

{ x: number, y: (number -> T) } o { z: boolean }
= { x: number, y: (number -> T), z: boolean }

71/151

Type Environment

The empty substitution is the neutral element
of the substitution-composition operation:

{} o {x1: T1, ..., xn: Tn} = {x1: T1, ..., xn: Tn}

72/151

Type Environment

The typeofExp operation has thus the
following signature and type definition:

typeofExp: Exp * TEnv -> TExp

73/151

Type Environment

We make efforts in this section to reuse the
same mechanisms we used when describing
the operational semantics of the language -

environments and substitutions.

74/151

Type of Variables

Equipped with type environments, we can
define the type of variable expressions:

typeofExp(<VarRef var>, tenv) -> tenv(var)

75/151

Type of Variables

What type should we return for a var in case we
made no assumptions about its type in TEnv?

76/151

Type of Variables

At present, we will trigger this as an error - as
we only consider the case of fully typed

programs, i.e., we require the programmer to
declare the type of all the variables in the

program. Variables cannot be referenced if they
are not declared beforehand.

77/151

Type of Variables

We will revisit this decision later when we
consider the task of type inference as opposed

to type checking.

78/151

Typing Rules

In the same way as we defined evaluation rules
for each type of expression, we define type

analysis rules.

79/151

Type Statements

To describe the typing rules, we first define a
useful device we call a typing statement:

80/151

Type Statements

Definition: Typing Statement

A typing statement is a true/false formula that
states a judgment about the type of an
expression, given a type environment.
Notation: TEnv ⊢ e : T

This statement means that if the type of
variables in a language expression e is as
specified in TEnv, then the type of e is T.

81/151

Type Statements

For example, the typing statement:

{x: Number} |- (+ x 5): Number

states that under the assumption that the type
of x is Number, the type of (+ x 5) is

Number.

82/151

Type Statements

The typing statement:

{f: [T1 -> T2], g: T1} |- (f g): T2

states that for every consistent replacement of
T1, T2, under the assumption that the type of f
is [T1 –> T2], and the type of g is T1, the

type of (f g) is T2.

83/151

Type Statements

The following typing statements are false:

84/151

Type Statements

{f: [T1 -> T2]} |- (f g): T2

This is false because having no type
assumption on g, (f g) might not satisfy the

well-typing rules of Scheme, and create a
runtime error.

85/151

Type Statements

{f: [Empty -> T2], g: T2} |- (f g): T2

is false because based on the operational
semantics of Scheme, if f is a parameter-less
procedure, the expression (f g) does not
satisfy the well-typing rules of Scheme.

86/151

Typing Rules

Let us enumerate typing rules for each type of
expression in the language, starting with simple
expression types. These typing rules define the
type system of our programming language.

87/151

Typing Rules

Typing rule Number:

For every type environment _TEnv and number _n:
_TEnv |- (NumExp _n): Number

88/151

Typing Rules

Typing rule Boolean:

For every type environment _TEnv and boolean _b:
_TEnv |- (BoolExp _b): Boolean

89/151

Typing Rules

Typing rule Variable:

For every type environment _TEnv and variable _v:
_TEnv |- (VarRef _v): _TEnv(_v)

90/151

Typing Rules

For primitive operators, we use the type
definition of each primitive operator.

91/151

Typing Rules

We know for example that + is a procedure with
type

(Number * ... * Number -> Number).
We express this in a single typing rule for each

primitive procedure:

92/151

Typing Rules

For every type environment _TEnv:
_TEnv |- +: (Number * ... * Number -> Number)

93/151

Typing Rules

In the implementation of the type checker, to
simplify the code, we ignore variadic primitives

- and consider +, -, * and / to be binary
operators only.

94/151

Typing Rules

Similarly, for other primitives:

95/151

Typing Rules

For every type environment _TEnv:
_TEnv |- not : [_S -> Boolean]

96/151

Typing Rules

_S is a type variable. That is, not is a
polymorphic primitive procedure - it applies to

any type and returns a boolean value.

97/151

Typing Rules

The display procedure has the typing rule:

98/151

Typing Rules

For every type environment _TEnv:
_TEnv |- display: (_S -> Void)

99/151

Typing Rules

display is also a polymorphic primitive
procedure.

100/151

Typing Rule for Procedures

The expressions which include variable
declarations are more complex and they involve
multiple type environments. Let us review the

rule for typing procedure expressions.

101/151

Typing Rule for Procedures

A procedure has the structure
(lambda (x1 ... xn) body).
With type annotations, we have:

(lambda (x1:t1 ... xn:tn) : t body).

102/151

Typing Rule for Procedures

What should be the type of this expression?

103/151

Typing Rule for Procedures

If we trust the annotations, the answer is
simple:

typeofExp((lambda (x1:t1 ... xn:tn) : t body))
= [t1 * ... * tn -> t]

104/151

Typing Rule for Procedures

But can we trust the annotations in a specific
expression? This is exactly what we want to

check, by traversing the body and type checking
it under specific typing assumptions.

105/151

Typing Rule for Procedures

The rule for our language reads as follows:

106/151

Typing Rule for Procedures

Typing rule Procedure:

For every: type environment _Tenv,
variables _x1, ..., _xn, n >= 0
expressions _e1, ..., _em, m >= 1, and
type expressions _S1, ...,_Sn, _U1, ...,_Um :

Procedure with parameters (n > 0):
If _TEnv o {_x1:_S1, ..., _xn:_Sn }

|- _ei:_Ui for all i = 1..m ,
Then _TEnv |- (lambda (_x1 ... _xn) _e1 ... _em):

[_S1 * ... * _Sn -> _Um]

Parameter-less Procedure (n = 0):
If _TEnv |- _ei:_Ui for all i=1..m,
Then _TEnv |- (lambda () _e1 ... _em) : [Empty -> _Um]

107/151

Typing Rule for Procedures

Note how the type of the body is the type of the
last expression in the body (the body is a list of
expressions meant to be evaluated in sequence
- the value of the body is the value of the last
expression, hence the type of the body is the

type of the last expression).

108/151

Typing Rule for Procedures

Still, we apply the rule to all the expressions in
the body, to actually type check them.

109/151

Typing Rule for Procedures

Note next that the rule indicates that we type
check the body in a TEnv where we assume that

the parameters have the declared types.

110/151

Meta-variables

The typing rules include meta-variables for
language expressions, type expressions and

type environments. When rules are
instantiated, the meta-variables are replaced

by real expressions of the same kind.

111/151

Meta-variables

The meta-variables should not be confused
with language or type variables. Therefore, they
deliberately are preceded with an underscore
to distinguish them from non-meta-variables.

112/151

Meta-variables

Each typing rule specifies an independent
(standalone), universally quantified typing
statement. The meta-variables used in

different rules are not related, and can be
consistently renamed.

113/151

Exhaustive Sub-expression Typing

Every typing rule requires typing statements for
all sub-expressions of the expression for which
a typing statement is derived. This property
guarantees type safety – the typing algorithm
assigns a type to every sub-expression which is

evaluated at run-time.

114/151

Exhaustive Sub-expression Typing

We will need to specify rules for if
expressions, application expressions, let and
letrec expressions as we go to complete the

specification of the type system of the
language.

115/151

Type Checking Algorithm

We now have the tools to specify the type
checking algorithm:

We assume here that all variable declarations
and procedures are fully type annotated.

116/151

Type Checking Algorithm

The algorithm traverses the AST of the
expression, as we have learned to do when

writing interpreters:

117/151

Type Checking Algorithm

// Purpose: Compute the type of an expression
// Traverse the AST and check the type according to the exp type.
// We assume that all variables and procedures
// have been explicitly typed in the program.
export const typeofExp = (exp: Parsed, tenv: TEnv): Result<TExp> =>

isNumExp(exp) ? makeOk(typeofNum(exp)) :
isBoolExp(exp) ? makeOk(typeofBool(exp)) :
isStrExp(exp) ? makeOk(typeofStr(exp)) :
isPrimOp(exp) ? typeofPrim(exp) :
isVarRef(exp) ? applyTEnv(tenv, exp.var) :
isIfExp(exp) ? typeofIf(exp, tenv) :
isProcExp(exp) ? typeofProc(exp, tenv) :
isAppExp(exp) ? typeofApp(exp, tenv) :
isLetExp(exp) ? typeofLet(exp, tenv) :
isLetrecExp(exp) ? typeofLetrec(exp, tenv) :
isDefineExp(exp) ? typeofDefine(exp, tenv) :
isProgram(exp) ? typeofProgram(exp, tenv) :
makeFailure("Unknown type");

118/151

Type Checking Algorithm

Each rule is implemented in a dedicated
procedure which traverses inductively its

parameter.

119/151

Type Checking Algorithm

The first few types of simple expressions are
simple procedures:

// a number literal has type num-te
const typeofNum = (n: NumExp): NumTExp => makeNumTExp();

// a boolean literal has type bool-te
const typeofBool = (b: BoolExp): BoolTExp => makeBoolTExp();

// a string literal has type str-te
const typeofStr = (s: StrExp): StrTExp => makeStrTExp();

120/151

Type Checking Algorithm

These procedures do not take TEnv as a
parameter because they are true regardless of

the TEnv state.

121/151

Type Checking Algorithm

For primitive operators, we map the operator to
its type expression:

122/151

Type Checking Algorithm

// primitive ops have known proc-te types
const numOpTExp = parseTE('(number * number -> number)');
const numCompTExp = parseTE('(number * number -> boolean)');
const boolOpTExp = parseTE('(boolean * boolean -> boolean)');

// Todo: cons, car, cdr, list
export const typeofPrim = (p: PrimOp): Result<TExp> =>

(p.op === '+') ? numOpTExp :
(p.op === '-') ? numOpTExp :
(p.op === '*') ? numOpTExp :
(p.op === '/') ? numOpTExp :
(p.op === 'and') ? boolOpTExp :
(p.op === 'or') ? boolOpTExp :
(p.op === '>') ? numCompTExp :
(p.op === '<') ? numCompTExp :
(p.op === '=') ? numCompTExp :
// Important to use a different signature for each op with a TVar to avoid capture
(p.op === 'number?') ? parseTE('(T -> boolean)') :
(p.op === 'boolean?') ? parseTE('(T -> boolean)') :
(p.op === 'string?') ? parseTE('(T -> boolean)') :
(p.op === 'list?') ? parseTE('(T -> boolean)') :
(p.op === 'pair?') ? parseTE('(T -> boolean)') :
(p.op === 'symbol?') ? parseTE('(T -> boolean)') :
(p.op === 'not') ? parseTE('(boolean -> boolean)') :
(p.op === 'eq?') ? parseTE('(T1 * T2 -> boolean)') :
(p.op === 'string=?') ? parseTE('(T1 * T2 -> boolean)') :
(p.op === 'display') ? parseTE('(T -> void)') :
(p.op === 'newline') ? parseTE('(Empty -> void)') :
makeFailure(`Primitive not yet implemented: ${p.op}`);

123/151

Type Checking Compound Expressions

Let us now consider a case of a compound
expression without variable declarations: what

should be the type of an if expression?

124/151

Type Checking Compound Expressions

const typeofIf = (ifExp: IfExp, tenv: TEnv): Result<TExp> => {
const testTE = typeofExp(ifExp.test, tenv);
const thenTE = typeofExp(ifExp.then, tenv);
const altTE = typeofExp(ifExp.alt, tenv);
const constraint1 = bind(testTE, (testTE: TExp) =>

checkEqualType(testTE, makeBoolTExp(), ifExp));
const constraint2 = safe2((thenTE: TExp, altTE: TExp) =>

checkEqualType(thenTE, altTE, ifExp))(thenTE, altTE);
return safe2((_c1: true, _c2: true) => thenTE)

(constraint1, constraint2);
};

125/151

Type Checking Compound Expressions

We check that the components of the
expression are well typed, by invoking

recursively typeofExp of each of the three
components of the if expression.

126/151

Type Checking Compound Expressions

We then compare the type computed by
typeofExp with our expectations:

• The test component must be a boolean
• The then and alt components must be of
the same type

• The type of the whole expression is that of
the then component (same as the alt
component)

127/151

Type Checking Compound Expressions

The if expression typing rule is thus specified
as follows:

128/151

Type Checking Compound Expressions

For every type environment _TEnv,
expressions _test, _then, _alt
type expression _S:

If _TEnv |- _test : Boolean
_TEnv |- _then : _S
_TEnv |- _alt : _S

Then _TEnv |- (if _test _then _alt) : _S

129/151

Type Checking Compound Expressions

In this rule, the constraint that the type of the
then component and alt component are
compatible is captured by the fact that the

same meta-variable appears (_S).

130/151

Type Checking Compound Expressions

In the type checking algorithm, we enforce this
by invoking the function checkEqualType.

At this stage, this constraint checking is
implemented as a simple equality test:

131/151

Type Checking Compound Expressions

// Purpose: Check that type expressions are equivalent
// as part of a fully-annotated type check process of exp.
// Return an error if the types are different - true otherwise.
// Exp is only passed for documentation purposes.
const checkEqualType =

(te1: TExp, te2: TExp, exp: Exp): Result<true> =>
equals(te1, te2) ? makeOk(true) :
safe3((te1: string, te2: string, exp: string) =>

makeFailure<true>(`Incompatible types:
${te1} and ${te2} in ${exp}`))

(unparseTExp(te1), unparseTExp(te2), unparse(exp));

132/151

Type Checking Compound Expressions

This type equality test is appropriate in the
case of type checking, we will change this to a
more complex mechanism when we turn to the

type inference algorithm.

133/151

Type Checking Compound Expressions

This procedure implements the invariant type
system we discussed above - types are

compatible if they are identical.

134/151

Type Checking Compound Expressions

Recall that in TypeScript we have a richer type
system with subtyping (for example between
map types and disjoint union types), and to
type check such relations a more complex
version of checkEqualType would be

necessary.

135/151

Typing Expressions with Variable Declarations

Let us analyze how the type checker
implements the typing rule for procedure

expressions: We specified this rule as follows:

136/151

Typing Expressions with Variable Declarations

Typing rule Procedure:

For every: type environment _Tenv,
variables _x1, ..., _xn, n >= 0
expressions _e1, ..., _em, m >= 1, and
type expressions _S1, ...,_Sn, _U1, ...,_Um :

Procedure with parameters (n > 0):
If _TEnv o {_x1:_S1, ..., _xn:_Sn }

|- _ei:_Ui for all i = 1..m ,
Then _TEnv |- (lambda (_x1 ... _xn) _e1 ... _em):

[_S1 * ... * _Sn -> _Um]

Parameter-less Procedure (n = 0):
If _TEnv |- _ei:_Ui for all i=1..m,
Then _TEnv |- (lambda () _e1 ... _em) : [Empty -> _Um]

137/151

Typing Expressions with Variable Declarations

The corresponding code in the type checker
includes the recursive traversal of the

sub-components in the body of the procedure:

138/151

Typing Expressions with Variable Declarations

// Purpose: compute the type of a proc-exp
// Typing rule:
// If type<body>(extend-tenv(x1=t1,...,xn=tn; tenv)) = t
// then type<lambda (x1:t1,...,xn:tn) : t exp)>(tenv) =
// (t1 * ... * tn -> t)
const typeofProc = (proc: ProcExp, tenv: TEnv): Result<TExp> => {

const argsTEs = map((vd) => vd.texp, proc.args);
const extTEnv =
makeExtendTEnv(map((vd) => vd.var, proc.args), argsTEs, tenv);

const constraint1 =
bind(typeofExps(proc.body, extTEnv),

(body: TExp) => checkEqualType(body, proc.returnTE, proc));
return bind(constraint1,

_ => makeOk(makeProcTExp(argsTEs, proc.returnTE)));
};

139/151

Typing Expressions with Variable Declarations

Finally, let us consider the typing rule for
application expression:

140/151

Typing Expressions with Variable Declarations

Typing rule Application:

For every: type environment _TEnv,
expressions _f, _e1, ..., _en, n >= 0 , and
type expressions _S1, ..., _Sn, _S:

Procedure with parameters (n > 0):
If _TEnv |- _f : [_S1*...*_Sn -> _S],

_TEnv |- _e1 : _S1, ..., _TEnv |- _en : _Sn
Then _TEnv |- (_f _e1 ... _en) : _S

Parameter-less Procedure (n = 0):
If _TEnv |- _f : [Empty -> _S]
Then _TEnv |- (_f) : _S

141/151

Typing Expressions with Variable Declarations

The implementation in the type checker of this
rule is here.

142/151

https://github.com/bguppl/interpreters/blob/master/src/L5/L5-typecheck.ts#L135

Typing Expressions with Variable Declarations

Observe how the implementation verifies
additional semantic errors:

• Invocation of a non-procedure type
• Invocation of a procedure with the wrong
number of parameters

143/151

Static vs. Dynamic Analysis

Let us observe the structure of the type
checker: it is a typical syntax-driven traversal of

the expression AST.

144/151

Static vs. Dynamic Analysis

• All the nodes in the AST are exhaustively
traversed.

• On each node, we apply a typing rule and
compute a type value.

145/151

Static vs. Dynamic Analysis

• When we traverse expressions which
traverse a scope contour (bind variable
declarations to values - such as application
expressions, let or letrec expressions) or
a new scope (such as procedure
expressions), we maintain an environment
to reflect the structure of the accessible
variables.

146/151

Static vs. Dynamic Analysis

This structure is parallel to the structure of the
interpreters we analyzed in Chapter 2.

147/151

Static vs. Dynamic Analysis

There are, however, important differences
between the type checker and the interpreter:

148/151

Static vs. Dynamic Analysis

• The type checker sees only program text,
whereas the interpreter runs over actual
data.

• The type environment binds identifiers to
types, whereas the interpreter’s
environment binds identifiers to values or
locations (boxes).

149/151

Static vs. Dynamic Analysis

• The type checker compresses (even infinite)
sets of values into types, whereas the
interpreter treats the elements of these sets
distinctly.

• The type checker always terminates,
whereas the interpreter might not.

150/151

Static vs. Dynamic Analysis

• The type checker passes over the body of
each expression only once, whereas the
interpreter might pass over each body
anywhere from zero to infinite times.

151/151

