
Principles of Programming Languages
Operational Semantics: Substitution Model for Procedure
Application

1/174

Today

We continue our exploration of operational
semantics by addressing the case of procedure

application. The L2 language extends L1 by
introducing:

• User defined procedures
(lambda expressions)

• Conditional expressions
(if expressions)

2/174

Today

These two constructs combine well - so that we
can construct recursive functions (which

require a condition between the base case and
the recursive case).

3/174

L2 Syntax

The syntax of L2 extends that of L1 with two new
expression types - if-exp and proc-exp:

4/174

L2 Syntax

<program> ::= (L2 <exp>+) // program(exps:List(exp))
<exp> ::= <define-exp> | <cexp>
<define-exp> ::= (define <var-decl> <cexp>)

// def-exp(var:var-decl, val:cexp)
<cexp> ::= <num-exp> // num-exp(val:Number)

| <bool-exp> // bool-exp(val:Boolean)
| <prim-op> // prim-op(op:string)
| <var-ref> // var-ref(var:string)
| (if <exp> <exp> <exp>)

// if-exp(test,then,else) ##### L2
| (lambda (<var-decl>*) <cexp>+)

// proc-exp(params:List(var-decl), body:List(cexp)) ##### L2
| (<cexp> <cexp>*)

// app-exp(rator:cexp, rands:List(cexp))
<prim-op> ::= + | - | * | / | < | > | = | not
<num-exp> ::= a number token
<bool-exp> ::= #t | #f
<var-ref> ::= an identifier token
<var-decl> ::= an identifier token

5/174

L2 Value Type

A program in L2 can now use user defined
procedures such as:

(L2
(define square (lambda (x) (* x x)))
(+ (square 2) (square 3)))

6/174

L2 Value Type

To determine which values can be computed by
L2 programs, we proceed inductively on the

structure of L2-ASTs. The same values as those
in L1 can be computed, and we must analyze

the two new types of expressions:

7/174

L2 Value Type

• IfExp expressions return the value of
either the then-branch or the else-branch,
which can be any CExp expressions. Thus
IfExp does not compute new types of
values.

• ProcExp expressions return a new type of
value - which we have called a closure.

8/174

L2 Value Type

We must then extend the definition of the Value
type to include closure values:

Value = Number | Boolean | Prim-op
| Void | Closure

9/174

L2 Value Type

We define the closure data type as a record
with two fields:

• Params: a list of VarDecl values
• Body: a list of CExp values

Closure ::= (Closure (<var-decl>*) <cexp>+)
// closure(params: List(var-decl), body: List(cexp))

10/174

L2 Value Type

Note that a ProcExp
(lambda (x) (* x x))

is an expression while a closure is a value.
They are of 2 different types - closures are the

result of a computation.

11/174

L2 Evaluation Rules

The evaluation rules that define the
operational semantics of L2 include the same
rules as those of L1 for the L1 expression types.
We must specify evaluation rules for the new

expression types:

12/174

Evaluation of Conditional Expressions

• eval(IfExp(test, then, alt), env) =>
;; test, then, alt are of type CExp
let c: Value = eval(test, env)
If c is considered a true value:

return eval(then, env)
else

return eval(alt, env)

13/174

Evaluation of Conditional Expressions

Note that we must define what counts as a true
value in the testing of the condition in an

IfExp. This definition of what counts as true is
a semantic decision - which is different in

different languages.

14/174

Evaluation of Conditional Expressions

In Scheme, a true value is anything that is not
#f. We implement this in this procedure in our

interpreter code:
// Purpose: Define what is considered a true value
// in an IfExp
export const isTrueValue = (x: Value): boolean =>

! (x === false);

15/174

Evaluation of Conditional Expressions

In JavaScript, the definition of what counts as
true in an IfExp is more complicated - it is any

value that is:

• not false
• not undefined
• not null
• not +0, -0 or NaN
• not an empty string ("")

16/174

Evaluation of Procedure Expressions

• eval(ProcExp(params, body), env) =>
;; Construct a closure value
return makeClosure(params, body)

17/174

Evaluation of Procedure Expressions

Observe that when we compute the value of a
procedure expression, there is no actual

computation going on besides the packaging of
the parameters and the body into a closure

record.

18/174

Evaluation of Procedure Expressions

The body is not computed as this stage. It will
only be computed when the procedure is

actually applied to arguments.

19/174

Evaluation of Procedure Expressions

This property is important: it means we can
delay the computation of an expression by
wrapping it inside a procedure, and invoking
the procedure only later. We will exploit this

property in Chapter 4.

20/174

Procedure Application

We have covered the two new types of
expressions with the evaluation rules above –
but another place in the operational semantics
must now be updated because of the presence

of closures: procedure application.

21/174

Procedure Application

In the L1 case, the only procedure value that
could be applied to arguments was a primitive
operator. This was covered in the evaluation

rule for AppExp expressions:

22/174

Procedure Application

• eval(AppExp(rator, rands)) =>
;; rator is of type CExp
;; rands is of type CExp[]
let proc = eval(rator)
let args = map(eval, rands)
return applyProc(proc, args)

23/174

Procedure Application

applyProc defines how a procedure value is
applied to values. We must now define how a
closure value is applied to argument values.

24/174

Procedure Application

Observe that in order to evaluate an AppExp
whose operator evaluates to a closure, we
followed the same process as for primitive

procedures: first evaluate the elements of the
combination, then apply the closure (which is
the value of the operator) to the arguments

(which are the values of the operands).

25/174

Procedure Application

This strategy is what is called applicative order
evaluation. It is the standard evaluation

strategy in most programming languages, but
we will discuss an alternative strategy in the

next section (normal evaluation).

26/174

Procedure Application

To apply a closure to arguments, we define the
substitution model: evaluate the body of the
closure with each formal parameter replaced

by the corresponding argument.

27/174

Procedure Application

Let’s follow an example:

(define square (lambda (x) (* x x))
(square 5)

28/174

Procedure Application

The evaluation process is the following:

29/174

Procedure Application

1. Evaluate defineExp:
1.1 Evaluate (lambda (x) (* x x)) => (closure (x) (* x x))
1.2 Bind square to the value (closure (x) (* x x))

in the global environment
2. Evaluate (square 5) (an AppExp) in the global environment:

2.1 Evaluate square (a VarRef expression) => (closure (x) (* x x))
2.2 Evaluate 5 (a NumExp expression) => 5
2.3 ApplyProc[(closure (x) (* x x)) (5)]

30/174

Procedure Application

;; To clarify the process let us use full AST for the closure elements
;; (closure [(VarDecl x)]
;; [(AppExp (PrimOp *) [(VarRef x), (VarRef x)])])
2.3.1 Substitute the VarRef free occurrences of the VarDecl in body

with the corresponding value
Substituted-body = [(AppExp (PrimOp *) [5, 5])]

2.3.2 Evaluate the resulting substituted body:
return eval(substituted-body)

2.3.2.1 Eval (PrimOp *) => (PrimOp *)
2.3.2.2 Eval 5 => 5
2.3.2.3 Eval 5 => 5
2.3.2.4 ApplyProc((PrimOp *), [5, 5])

2.3.2.4.1 ApplyPrimitive((PrimOp *), [5, 5]) => 25

31/174

Procedure Application

We must clarify three aspects of the
applicative-eval substitution model:

• Type of the substituted elements into the
AST of the body

• Substitute only free occurrences of the
params in the body

• Need to rename bound variables inside the
body to avoid variable capture

32/174

Substitute Expressions instead of Values

Let us analyze the types of the objects
manipulated in the substitution operation

above:
;; (closure [(VarDecl x)]
;; [(AppExp (PrimOp *) [(VarRef x), (VarRef x)])])
2.3.1 Substitute the VarRef free occurrences of the VarDecl in body

with the corresponding value
Substituted-body = [(AppExp (PrimOp *) [5, 5])]

33/174

Substitute Expressions instead of Values

The applyProc procedure receives arguments
which are all of type Value (proc is a Value
which can be either a PrimOp or a Closure

value, rands is a list of Values).

34/174

Substitute Expressions instead of Values

The body of the closure is a list of CExp
expressions. Our objective is to replace all
VarRef occurrences in the body with the

corresponding values of the arguments (in our
example, we want to replace (VarRef x) with

5).

35/174

Substitute Expressions instead of Values

There is a typing problem with this operation: 5
is a Value, while (VarRef x) is an

expression. If we replace (VarRef x) with the
value 5 (a number), the resulting body is not a

valid AST.

36/174

Substitute Expressions instead of Values

To address this discrepancy, we must map the
values of the arguments to corresponding

expressions. This mapping is performed in our
interpreter with the following function:

37/174

Substitute Expressions instead of Values

const valueToLitExp =
(v: Value): NumExp | BoolExp | StrExp | LitExp |

PrimOp | ProcExp =>
isNumber(v) ? makeNumExp(v) :
isBoolean(v) ? makeBoolExp(v) :
isString(v) ? makeStrExp(v) :
isPrimOp(v) ? v :
isClosure(v) ? makeProcExp(v.params, v.body) :
makeLitExp(v);

38/174

Substitute Expressions instead of Values

As a result, the closure application above is
processed as follows:

;; (closure [(VarDecl x)]
;; [(AppExp (PrimOp *) [(VarRef x), (VarRef x)])])
2.3.1 Substitute the VarRef free occurrences of the VarDecl in body

with the corresponding value
Substituted-body = [(AppExp (PrimOp *) [NumExp(5), NumExp(5)])]

and we confirm that the resulting
substituted-body is a valid AST.

39/174

Substitute Expressions instead of Values

In summary, the substitution procedure has
type:

// @Pre: vars and exps have the same length
const substitute = (body: CExp[],

vars: string[],
exps: CExp[]): CExp[]

40/174

Substitute Only Free Variable Occurrences in the Body

When we apply a closure to arguments, we
consider the body and the params of the

closure separately. If you look at
(closure (x) (* x y))

in the body of the closure - the variable x
occurs bound (it is bound by the parameter of
the closure) and the variable y occurs free.

41/174

Substitute Only Free Variable Occurrences in the Body

If we now look at the body separately -
(* x y) - then the variables which were

bound to the params now appear free in the
body.

These variable references are the occurrences
we must replace with the value of the

argument.

42/174

Substitute Only Free Variable Occurrences in the Body

Consider the case of another bound occurrence
of the x variable in the body as in this example:

(closure (x) ; 1
((lambda (x) (* x x)) ; 2
(+ x x))) ; 3

43/174

Substitute Only Free Variable Occurrences in the Body

(closure (x) ; 1
((lambda (x) (* x x)) ; 2
(+ x x))) ; 3

In this case, the VarRef occurrences in line 2
are bound in the body to the VarDecl in line 2,

while the occurrences in line 3 are free.

When we apply this closure to the value 2, we
must replace the free occurrences in line 3 but

leave those in line 2 unchanged.

44/174

Substitute Only Free Variable Occurrences in the Body

The substitution algorithm is implemented in
the following function - which is a typical

syntax-driven function, which traverses a list of
ASTs, and recursively transforms the nodes. The

only expression type where an actual
transformation is performed is VarRef.

45/174

Substitute Only Free Variable Occurrences in the Body

Observe how the code of the transformation is
similar to the code of applyEnv we discussed

in the previous lecture.

When traversing a ProcExp within the body (as
in the example we just reviewed above),

substitute removes from the list of variables to
be substituted the variables which are now

bound by the new VarDecls of the ProcExp.
This is performed with the call to filter.

46/174

Substitute Only Free Variable Occurrences in the Body

// @Pre: vars and exps have the same length
const substitute =
(body: CExp[],
vars: string[],
exps: CExp[]): CExp[] => {
// ...
return map(sub, body);

}

47/174

Substitute Only Free Variable Occurrences in the Body

const sub = (e: CExp): CExp =>
isNumExp(e) ? e :
isBoolExp(e) ? e :
isPrimOp(e) ? e :
isLitExp(e) ? e :
isStrExp(e) ? e :
isVarRef(e) ? subVarRef(e) :
isIfExp(e) ? makeIfExp(sub(e.test),

sub(e.then),
sub(e.alt)) :

isProcExp(e) ? subProcExp(e) :
isAppExp(e) ? makeAppExp(sub(e.rator),

map(sub, e.rands)) :
e; 48/174

Substitute Only Free Variable Occurrences in the Body

const subVarRef = (e: VarRef): CExp => {
const pos = indexOf(e.var, vars);
return ((pos > -1) ? exps[pos] : e);

};

const subProcExp = (e: ProcExp): ProcExp => {
const argNames = map((x) => x.var, e.args);
// zip creates a list of pairs (x_i, y_i)
// given 2 lists (x_i) and (y_i)
const subst = zip(vars, exps);
// Do not substitute vars which are bound
// by the args of the proc
const freeSubst = filter(ve => indexOf(first(ve), argNames) === -1,

subst);
return makeProcExp(e.args,

substitute(e.body,
map(first, freeSubst),
map(second, freeSubst)));

};

49/174

Avoid Capturing Free Variables During Substitution

Consider the following program:
(define z (lambda (x) (* x x)))

(((lambda (x) (lambda (z) (x z))) ; 1
(lambda (w) (z w))) ; 2
2)

If we apply the substitution model as presented
so far when computing the 2nd expression - we

replace x with the expression
(lambda (w) (z w)) (which is the

parameter passed as the x argument in line 1).
50/174

Avoid Capturing Free Variables During Substitution

The resulting substituted body is:

(lambda (z) ((lambda (w) (z w)) z))

51/174

Avoid Capturing Free Variables During Substitution

The problem in this substitution is that the
inner VarRef z coming from the function

(lambda (w) (z w)) is now captured by the
(lambda (z) ...) context in which we

operated the substitution.

As a result, this z VarRef now refers to the
(lambda (z) ...) VarDecl instead of
referring to the global (define z ...)

VarDecl as it should.

52/174

Avoid Capturing Free Variables During Substitution

This effect is called free variable capture and
we must avoid it.

53/174

Avoid Capturing Free Variables During Substitution

The simplest solution to address this problem
is to ensure that before we perform

substitution, we rename consistently all the
bound variables that occur in the body with

fresh names.

54/174

Avoid Capturing Free Variables During Substitution

This solution relies on the observation we
mentioned in the lecture about syntactic

operations that the actual name of variables
does not modify the semantics of expressions

as long as their lexical address remains
consistent.

55/174

Avoid Capturing Free Variables During Substitution

The renaming algorithm is performed
consistently through a syntax-driven traversal

of the body AST. It is implemented in the
following manner in the interpreter. Note that

the only type of expressions which are
transformed in this AST transformation are

ProcExp constituents.

56/174

Avoid Capturing Free Variables During Substitution

/*
Purpose: create a generator of new strings of the form
v__n with n is incremented at each call.
Note the typical usage of a closure with side effect
of the closed variable.

Example:
const gen = makeVarGen();
console.log(gen("v")) => "v__1"
console.log(gen("v")) => "v__2"

*/
const makeVarGen = (): (v: string) => string => {

let count: number = 0;
return (v: string) => {

count++;
return `${v}__${count}`;

};
}; 57/174

Avoid Capturing Free Variables During Substitution

const renameExps = (exps: CExp[]): CExp[] => {
// ...
return map(replace, exps);

};

58/174

Avoid Capturing Free Variables During Substitution

const replace = (e: CExp): CExp =>
isIfExp(e) ? makeIfExp(replace(e.test),

replace(e.then),
replace(e.alt)) :

isAppExp(e) ? makeAppExp(replace(e.rator),
map(replace, e.rands)) :

isProcExp(e) ? replaceProc(e) :
e;

59/174

Avoid Capturing Free Variables During Substitution

const varGen = makeVarGen();
const replaceProc = (e: ProcExp): ProcExp => {
const oldArgs = map((arg: VarDecl): string => arg.var,

e.args);
const newArgs = map(varGen, oldArgs);
const newBody = map(replace, e.body);
return makeProcExp(map(makeVarDecl, newArgs),

substitute(newBody,
oldArgs,
map(makeVarRef, newArgs)));

}

60/174

The Apply Procedure Summarized

Putting all elements discussed above together,
the apply-proc procedure implements the

following algorithm:

61/174

The Apply Procedure Summarized

const L3applyProcedure =
(proc: Value, args: Value[], env: Env): Result<Value> =>
isPrimOp(proc) ? applyPrimitive(proc, args) :
isClosure(proc) ? applyClosure(proc, args, env) :
makeFailure("Bad procedure " + JSON.stringify(proc));

const applyClosure =
(proc: Closure, args: Value[], env: Env): Result<Value> => {
let vars = map((v: VarDecl) => v.var, proc.params);
let body = renameExps(proc.body);
let litArgs = map(valueToLitExp, args);
return evalSequence(substitute(body, vars, litArgs), env);

}

62/174

The Apply Procedure Summarized

Observe that:

1. we make sure the body is renamed so that
we avoid capturing free variables

2. we map arguments to lit-exps
3. then we perform the substitution

63/174

The Apply Procedure Summarized

When describing the apply procedure
operation, we use the following terminology:

• Substitute formal parameters
• Reduce (evaluate the substituted body)

64/174

Renaming and Substitution Operations

Let us review the properties of the two
operations we defined over ASTs: Renaming

and Substitution.

65/174

Renaming

Bound variables in expressions can be
consistently renamed by new variables (that do
not occur in the expression) without changing
the intended meaning of the expression. That
is, expressions that differ only by consistent
renaming of bound variables are considered

equivalent.

66/174

Renaming

For example, the following are equivalent pairs:

(lambda (x) x)
(lambda (x1) x1)

(+ x ((lambda (x) (+ x y)) 4))
(+ x ((lambda (x1) (+ x1 y)) 4))

67/174

Renaming

An example of incorrect renaming:

(+ x ((lambda (y) (+ y y)) 4))
(+ x1 ((lambda (x1) (+ x1 y)) 4))

68/174

Renaming

Compare this operation of renaming with the
Lexical Address transformation we defined in a
previous lecture. If we transform an expression
E1 and its renamed version rename(E1) into
lexical address notation and remove the names

of the variables - we will obtain identical
expressions.

69/174

Substitution

Substitute is an operation which replaces free
occurrences of variable references in an

expression by other expressions.

70/174

Substitution

Definition
A substitution s is a mapping from a finite set
of variables to a finite set of expressions.

71/174

Substitution

Substitutions are denoted using set notation.
For example:

{ x = 3,
y = a,
z = #t,
w = (lambda (x) (+ x 1)) }

is a substitution.

72/174

Substitution

{ x = 3,
x = a,
z = #t,
w = (lambda (x) (+ x 1)) }

is not a substitution because the variable x is
mapped to 2 distinct values.

73/174

Substitution

NOTE: in these expressions, we denote
expressions in their unparsed form instead of
the more verbose AST form - but remember
that substitutions map variable names to

expressions.

74/174

Substitution

For example,

{ x = 3, y = a, z = #t }

really denotes:

{ x = (num-exp 3),
y = (lit-exp a),
z = (bool-exp #t) }

75/174

Composition (combination) of Substitutions

Definition
The composition of substitutions s and s′,
denoted s ◦ s′, is a substitution s′′ that extends
s with a binding ⟨x; s′(x)⟩ for every variable x
for which s(x) is not defined.

76/174

Composition (combination) of Substitutions

For example:
{ x = 3, y = a } o { z = #t, w = (lambda (x) (+ x 1)) } =
{ x = 3, y = a, z = #t, w = (lambda (x) (+ x 1)) }

77/174

Composition (combination) of Substitutions

The empty substitution {} is the neutral
element of the substitution-composition

operation:
For every substitution s, {} ◦ s = s ◦ {} = s.

78/174

Substitution Application

By definition, The substitute operation consists
of applying a substitution s to an expression E.
This operation is denoted E ◦ s (or just Es if no
confusion arises), and involves replacing free
variable occurrences in E by expressions.

79/174

Substitution Application

Substitution is performed in two steps:

• Consistent renaming of the expression E
and the expressions in s.

• Simultaneous replacement of all free
occurrences of the variables of s in the
renamed E by the corresponding renamed
expressions of s.

80/174

Substitution Examples

• 10 o {x = 5} = 10: No renaming; no
replacement.

• (+ x y) o {x = 5} = (+ 5 y): No renaming;
just replacement.

• (+ x y) o {x = 5, y = 'x} = (+ 5 'x): No
renaming; just replacement.

81/174

Substitution Examples

• ((+ x ((lambda (x) (+ x 3)) 4)))
o {x = 5} =
1. Renaming: E turns into
((+ x ((lambda (x1) (+ x1 3)) 4)))

2. Substitute: E turns into:
((+ 5 ((lambda (x1) (+ x1 3)) 4)))

82/174

Substitution Examples

• (lambda (y) (((lambda (x) x) y) x))
o {x = (lambda (x) (y x))} =
Variable y in the substitution is free. It should stay
free after the substitution application.
1. Renaming: The substitution turns into
{x = (lambda (x1) (y x1))},
E turns into
(lambda (y2) (((lambda (x3) x3) y2)
x))

2. Substitute: E turns into
(lambda (y2) (((lambda (x3) x3) y2)
(lambda (x1) (y x1)))

83/174

Substitution Examples

Observe: What would be the result without
renaming? Note the difference in the binding

status of the variable y.

84/174

Applicative Eval Examples

Let us trace the evaluation of the applicative
eval algorithm on the following L2 program:

(L2
(define square (lambda (x) (* x x)))
(define sum-of-squares (lambda (x y)

(+ (square x) (square y))))
(define f (lambda (a) (sum-of-squares (+ a 1) (* a 2)))
(f 5)) ;; 136

We skip the evaluation of the three define
expressions, which bind the variables to

closures - and trace the evaluation of (f 5):

85/174

Applicative Eval Examples

applicative-eval[(f 5)] ==>
applicative-eval[f] ==>

<Closure (a) (sum-of-squares (+ a 1) (* a 2))>
applicative-eval[5] ==> 5

86/174

Applicative Eval Examples

applicative-eval[(sum-of-squares (+ 5 1) (* 5 2))] ==>
applicative-eval[sum-of-squares] ==>

<Closure (x y) (+ (square x) (square y))>
applicative-eval[(+ 5 1)] ==>

applicative-eval[+] ==> <prim-op +>
applicative-eval[5] ==> 5
applicative-eval[1] ==> 1

==> 6
applicative-eval[(* 5 2)] ==>

applicative-eval[*] ==> <prim-op *>
applicative-eval[5] ==> 5
applicative-eval[2] ==> 2

==> 10

87/174

Applicative Eval Examples

applicative-eval[(+ (square 6) (square 10))] ==>
applicative-eval[+] ==> <prim-op +>
applicative-eval[(square 6)] ==>

applicative-eval[square] ==>
<Closure (x) (* x x)>

applicative-eval[6] ==> 6
==>
applicative-eval[(* 6 6)] ==>

applicative-eval[*] ==> <prim-op *>
applicative-eval[6] ==> 6
applicative-eval[6] ==> 6

==> 36

88/174

Applicative Eval Examples

applicative-eval[(+ (square 6) (square 10))] ==>
...
applicative-eval[(square 10)]

applicative-eval[square] ==>
<Closure (x) (* x x))>

applicative-eval[10] ==> 10
==>
applicative-eval[(* 10 10)] ==>

applicative-eval[*] ==> <prim-op *>
applicative-eval[10] ==> 10
applicative-eval[10] ==> 10

==> 100
==> 136

89/174

Example with Renaming

Let us trace the evaluation of the following
program:

(L2
(define y 4)
(define f (lambda (g) (lambda (y) (+ y (g y)))))
(define h (lambda (x) (+ x y)))
(f h)) ;; => <Closure (y1) (+ y1 ((lambda (x) (+ x y)) y1))>

90/174

Example with Renaming

Trace of the algorithm:
applicative-eval[(f h)] ==>

applicative-eval[f] ==>
<Closure (g) (lambda (y) (+ y (g y)))>

applicative-eval[h] ==>
<Closure (x) (+ x y)>

91/174

Example with Renaming

Substitute – rename both expressions and replace:
Map the closure value of f to the
corresponding lambda expression

(lambda (y2) (+ y2 (g y2)))
o {g = (lambda (x1) (+ x1 y))}

Reduce -
applicative-eval[(lambda (y2)

(+ y2 ((lambda (x1)
(+ x1 y)) y2)))]

==> <Closure (y2) (+ y2 ((lambda (x1) (+ x1 y)) y2))>

92/174

Example with Renaming

Renaming plays here an essential role. Without
it, the application ((f h) 3) would replace
all free occurrences of y by 3, yielding 9 as the
result, instead of 10 - the correct value when
the inner y variable reference remains bound

to the global VarDecl of y to 4.

93/174

Parameter Passing Mode: By Value

The substitution model – applicative order uses
the call-by-value method for parameter

passing.

This is the standard evaluation model in
Scheme, and the most frequent method in

other languages as well (JavaScript, C++, Java).

94/174

L3: Compound Values and Quoted Literal Expressions

Let us extend L2 with support for compound
values, leading to the definition of the L3

language.

95/174

L3: Compound Values and Quoted Literal Expressions

In this language, the AST is extended with new
primitives to support compound values (lists),
we also introduce a special value for the empty
list ('()) which the parser must recognize and
support for compound literal expressions: up
to this point, the only literal expressions we

supported were numbers, strings and booleans.

96/174

L3: Compound Values and Quoted Literal Expressions

The expanded AST for L3 is:

97/174

L3: Compound Values and Quoted Literal Expressions

98/174

L3: Compound Values and Quoted Literal Expressions

The main additions in L3 is the fact that the set
of computed values now includes complex

composite values (lists). The set of computed
values is now:

Value = Number | Boolean | Prim-op | Closure
| Void | SExp

SExp = Symbol | Number | Boolean
| EmptySExp | Pair(SExp, SExp)

99/174

L3: Compound Values and Quoted Literal Expressions

To support these composite datatypes, we
introduce value constructors and accessors as

primitives (cons, car, cdr) and the
corresponding type predicates as primitives as
well (pair?, list?, symbol?) and equality
predicate (eq?) which must be capable to
recognize the empty-list value. We also

introduce side effect primitives (display and
newline).

100/174

L3: Compound Values and Quoted Literal Expressions

The empty list special value (which is a value
which is not a number, not a boolean and not a

symbol) must be supported in the syntax.

101/174

L3: Compound Values and Quoted Literal Expressions

The last modification we introduce is to support
literal expressions for the new compound
values. We use the Scheme quote special
operator to support these. An expression:

(quote <sexp>)
is a special expression which is computed

according to the following computation rule:

eval((quote <sexp>)) => <sexp>

102/174

L3: Compound Values and Quoted Literal Expressions

For example:

(quote a) ;; => 'a
(quote (a b)) ;; => '(a b)

103/174

L3: Compound Values and Quoted Literal Expressions

The special form (quote <sexp>) is written
in Scheme in a shorthand notation '<sexp> -
for example, 'a for a symbol or '(a b) for a

list.

104/174

L3: Compound Values and Quoted Literal Expressions

To support the apply-procedure and
substitution of values back as expressions, we
took care in the procedure to turn values into
expressions with a special case for Literal

Expressions that wrap SExp values:

105/174

L3: Compound Values and Quoted Literal Expressions

const valueToLitExp =
(v: Value): NumExp | BoolExp | StrExp | LitExp |

PrimOp | ProcExp =>
isNumber(v) ? makeNumExp(v) :
isBoolean(v) ? makeBoolExp(v) :
isString(v) ? makeStrExp(v) :
isPrimOp(v) ? v :
isClosure(v) ? makeProcExp(v.params, v.body) :
makeLitExp(v);

106/174

L3: Compound Values and Quoted Literal Expressions

Since SExps are not a type that exists in
TypeScript, we must implement this type as
part of the possible values computed by L3.
This is implemented in the definition of the

L3-value module:

107/174

L3: Compound Values and Quoted Literal Expressions

interface CompoundSExp {
tag: "CompoundSexp";
val1: SExpValue;
val2: SExpValue;

}

interface EmptySExp {
tag: "EmptySExp";

}

interface SymbolSExp {
tag: "SymbolSExp";
val: string;

} 108/174

L3: Compound Values and Quoted Literal Expressions

type SExpValue = number | boolean | string | PrimOp
| Closure | SymbolSExp | EmptySExp
| CompoundSExp;

109/174

L3: Compound Values and Quoted Literal Expressions

const isSExp = (x: any): x is SExpValue =>
typeof(x) === 'string' ||
typeof(x) === 'boolean' ||
typeof(x) === 'number' ||
isSymbolSExp(x) ||
isCompoundSExp(x) ||
isEmptySExp(x) ||
isPrimOp(x) ||
isClosure(x);

110/174

L3: Compound Values and Quoted Literal Expressions

const makeCompoundSExp =
(val1: SExpValue, val2: SExpValue): CompoundSExp =>
({tag: "CompoundSexp", val1: val1, val2 : val2});

const isCompoundSExp =
(x: any): x is CompoundSExp =>
x.tag === "CompoundSexp";

111/174

L3: Compound Values and Quoted Literal Expressions

const makeEmptySExp = (): EmptySExp =>
({tag: "EmptySExp"});

const isEmptySExp = (x: any): x is EmptySExp =>
x.tag === "EmptySExp";

112/174

L3: Compound Values and Quoted Literal Expressions

const makeSymbolSExp = (val: string): SymbolSExp =>
({tag: "SymbolSExp", val: val});

const isSymbolSExp = (x: any): x is SymbolSExp =>
x.tag === "SymbolSExp";

113/174

L3: Compound Values and Quoted Literal Expressions

The SExp datatype must also be supported in
the parser for L3 - so that we expand the L3-AST
module with support for parsing SExp values
and returning quoted SExp values accordingly.

This is supported in the following function:

114/174

L3: Compound Values and Quoted Literal Expressions

// param is the parameter given to quote
const parseLitExp = (param: Sexp): Result<LitExp> =>

bind(parseSExp(param),
(sexp: SExpValue) => makeOk(makeLitExp(sexp)));

115/174

L3: Compound Values and Quoted Literal Expressions

const isDottedPair = (sexps: Sexp[]): boolean =>
sexps.length === 3 &&
sexps[1] === "."

const makeDottedPair = (sexps : Sexp[]): Result<SExpValue> =>
safe2((val1: SExpValue, val2: SExpValue) =>
makeOk(makeCompoundSExp(val1, val2)))
(parseSExp(sexps[0]), parseSExp(sexps[2]));

116/174

L3: Compound Values and Quoted Literal Expressions

// sexp is the output of p (sexp parser)
export const parseSExp = (sexp: Sexp): Result<SExpValue> =>

sexp === "#t" ? makeOk(true) :
sexp === "#f" ? makeOk(false) :
isString(sexp) && isNumericString(sexp) ? makeOk(+sexp) :
isSexpString(sexp) ? makeOk(sexp.toString()) :
isString(sexp) ? makeOk(makeSymbolSExp(sexp)) :
sexp.length === 0 ? makeOk(makeEmptySExp()) :
isDottedPair(sexp) ? makeDottedPair(sexp) :
isArray(sexp) ? (

// fail on (x . y z)
sexp[0] === '.' ? makeFailure("Bad dotted sexp: " + sexp) :
safe2((val1: SExpValue, val2: SExpValue) =>
makeOk(makeCompoundSExp(val1, val2)))

(parseSExp(first(sexp)), parseSExp(rest(sexp)))) :
makeFailure(`Bad literal expression: ${sexp}`);

117/174

L3: Compound Values and Quoted Literal Expressions

With this interpreter, we can write programs
such as the following - many examples are

shown in the tests:
(L3 (define empty? (lambda (x) (eq? x '())))

(define filter
(lambda (pred l)

(if (empty? l)
l
(if (pred (car l))

(cons (car l) (filter pred (cdr l)))
(filter pred (cdr l))))))

(filter (lambda (x) (not (= x 2))) '(1 2 3 2)))

118/174

Error Handling

Both the parser and the interpreter of L3
handle possible errors - either in the syntax of
the program to be parsed or in the semantics
of the program, that is, the interpreter must be
capable of detecting an error at runtime and to

report this error properly.

119/174

Error Handling

We implement error handler in the parser using
the Result monad approach:

const parseL3 = (x: string): Result<Program>

120/174

Error Handling

That is, the parser either returns a valid
Program result wrapped in an Ok value or a
Failure. Similarly, we define the interpreter

with the following signature:
const L3applicativeEval =

(exp: CExp, env: Env): Result<Value>

121/174

Error Handling

That is, the interpreter can obtain as parameter
a valid CExp, and it returns either an Ok Value

or a Failure. We must make sure the
interpreter is never passed a Failure value in

one of the recursive calls.

122/174

Error Handling

This is ensured by consistently adopting the
pattern of

bind(<call returning a Result<Value>>,
(value: Value) => continuation)

123/174

Error Handling

This means that we do not change the
definition of the AST data type or the Value
data type to include Error as a possible

values. There are two reasons for this decision:

• Errors are not real ASTs or Values - they are
semantically outside the domains of the
syntax and the interpreter.

• Errors are absorbing elements of the
interpreter.

124/174

Error Handling

Absorbing means that if we compose an Error
with any other value when interpreting a

compound expression, then the whole value
must become an Error - regardless of the

rules of evaluation of the expression (whether
it is a special form or an application).

125/174

Error Handling

For example, consider the rule of evaluation of
an IfExp expression: it is a special form - that is,
not all sub-expressions are evaluated before

the value of the compound IfExp is computed.
The semantic definition is:

126/174

Error Handling

To eval: IfExp(test, then, alt) in env:
if isTrueValue(eval(test, env)) then

eval(then, env)
else

eval(alt, env)

127/174

Error Handling

With error processing, the definition is
implemented using the bind pattern:

const evalIf = (exp: IfExp, env: Env): Result<Value> =>
bind(L3applicativeEval(exp.test, env),

(test: Value) =>
isTrueValue(test) ?
L3applicativeEval(exp.then, env) :
L3applicativeEval(exp.alt, env));

128/174

Error Handling

We first test whether the evaluation of the
exp.test sub-expression returns an error. If it
is the case, the whole expression is reduced to

this error - without evaluating any of the
sub-expressions exp.then or exp.alt.

129/174

Error Handling

Similarly, when evaluating an application
expression (AppExp) - the semantic rule is:

To eval: AppExp(rator, rands) in env:
let proc = eval(rator, env)

args = map(eval, rands)
applyProc(proc, args)

130/174

Error Handling

With error processing, the processing is
expanded into:

isAppExp(exp) ? safe2((rator: Value, rands: Value[]) =>
L3applyProcedure(rator, rands, env))
(L3applicativeEval(exp.rator, env),
mapResult(rand => L3applicativeEval(rand, env),

exp.rands)) :

131/174

Error Handling

We adopt two distinct patterns (in addition to
the general bind pattern) to handle possible

errors:

132/174

Error Handling

First, the safe2 higher-order procedure
receives a procedure returning Value (not
allowing Failures) and describes what to do

with them in the happy path when no errors are
met. It returns a safe version of the procedure
which takes as arguments Result<Value>

and guards the procedure with error checking.

133/174

Error Handling

If one of the arguments is a Failure, the safe
procedure will return this Failure, else the Ok
values are passed to the happy path procedure.

134/174

Error Handling

Second, the mapResult higher-order
procedure applies a procedure f of type

[T1 => Result<T2>] to an array T1[] and
executes f on each of the elements of the

array. If one of them returns a Failure, this
failure is returned, else an Ok wrapper of the

array of results is returned.

135/174

Error Handling

That is, mapResult is a safe version of map for
functions that can return a Failure. Note that
it does not return an array Result<T2>[] but

instead a value of type Result<T2[]>.

136/174

Error Handling

const bind =
<T, U>(r: Result<T>, f: (x: T) => Result<U>): Result<U> =>
isOk(r) ? f(r.value) : r;

const mapResult =
<T, U>(f: (x: T) => Result<U>, list: T[]): Result<U[]> =>
isEmpty(list) ? makeOk([]) :
bind(f(first(list)),

(fa: U) => bind(mapResult(f, rest(list)),
(fas: U[]) => makeOk(cons(fa, fas))));

const safe2 = <T1, T2, T3>(f: (x: T1, y: T2) => Result<T3>):
(xr: Result<T1>, yr: Result<T2>) => Result<T3> =>
(xr: Result<T1>, yr: Result<T2>) =>

bind(xr, (x: T1) => bind(yr, (y: T2) => f(x, y)));

137/174

Error Handling

Note that the net result of guarding against
errors at all stages of the parsing and

evaluation process allows us to handle errors
in a proper manner without using exception in

the meta-language.

138/174

Error Handling

We do not throw exceptions. Instead, we return
Result values, and properly guard against

composing Error values against other types of
values along the whole evaluation process.

139/174

Error Handling

This is an important methodological point: we
can implement a process of evaluation which is
in essence equivalent to throwing exceptions

without requiring exceptions in the
meta-language.

140/174

Error Handling

In a sense, we have explained what throwing an
exception would mean in the semantic domain

by enforcing the fact that Failure is an
absorbing element for all semantic operations

that operate over Result<Value>.

141/174

Normal Order Evaluation Algorithm

applicative-eval implements an eager
approach in evaluation: arguments are

evaluated immediately, before the closure is
reduced.

142/174

Normal Order Evaluation Algorithm

An alternative algorithm implements a lazy
approach in evaluation: it avoids evaluating

arguments until the last moment it is
necessary. When is a value necessary in the

evaluation process?

• When we need to decide a computation
branch.

• When we need to apply a primitive
procedure.

143/174

Normal Order Evaluation Algorithm

The normal evaluation algorithm is similar to
the applicative-eval we have just reviewed. The

only difference, which leads to the lazy
approach, moves the step of argument

evaluation just before a primitive procedure is
applied. Otherwise, the algorithm is

unchanged, and the computation rules for the
special operators are the same.

144/174

Normal Order Evaluation Algorithm

This is a remarkably small change in the
algorithm with a deep change to the way the

language behaves.

145/174

Normal Order Evaluation Algorithm

To describe the Normal Order evaluation
algorithm, we only need to change a single

evaluation rule - that for application
expressions:

146/174

Normal Order Evaluation Algorithm

The applicative-eval form we first saw is:

• appEval(AppExp(rator, rands)) =>
;; rator is of type CExp
;; rands is of type CExp[]
let proc = appEval(rator, env)

;; First evaluate parameters
args = map(r => appEval(r, env), rands)
;; Then invoke the procedure
;; on the values
return apply-proc(proc, args)

147/174

Normal Order Evaluation Algorithm

To obtain the normal order lazy strategy, we
change the evaluation rule to the following:

148/174

Normal Order Evaluation Algorithm

• normalEval(AppExp(rator, rands))
=>
;; rator is of type CExp
;; rands is of type CExp[]
let proc = normalEval(rator, env)

;; Invoke the procedure on the
;; arguments *without* evaluating
;; them
return normal-apply-proc(proc, args)

149/174

Normal Order Evaluation Algorithm

The apply procedure process must be adapted
to this slight change:

150/174

Normal Order Evaluation Algorithm

apply-proc(proc: Closure, rands: CExp): Value
if proc is a primitive:

;; We must evaluate all the args to
;; apply a primitive
let args = map(normal-eval, rands)

return apply-primitive(proc, args)
else ;; proc is a closure

;; Substitute the rands and reduce
let subst-body = substitute params in body

of proc with rands
return normal-eval(subst-body)

151/174

Normal Order Evaluation Algorithm

Note that we do not need to turn the values
back into expression before we apply the

substitution in the body, since the rands are
passed as non-evaluated expressions.

152/174

Normal Evaluation Example

Let us consider the normal evaluation of the
same example as above:

(define square (lambda (x) (* x x)))
(define sum-of-squares (lambda (x y)

(+ (square x) (square y))))
(define f (lambda (a) (sum-of-squares (+ a 1) (* a 2)))
(f 5)

153/174

Normal Evaluation Example

normal-eval[(f 5)] ==>
normal-eval[f] ==>

<Closure (a) (sum-of-squares (+ a 1) (* a 2))>
==>
normal-eval[(sum-of-squares (+ 5 1) (* 5 2))] ==>

normal-eval[sum-of-squares] ==>
<Closure (x y) (+ (square x) (square y))>

==> ...

154/174

Normal Evaluation Example

normal-eval[(+ (square (+ 5 1)) (square (* 5 2)))] ==>
normal-eval[+] ==> <prim-op +>
normal-eval[(square (+ 5 1))] ==>

normal-eval[square] ==> <Closure (x) (* x x)>
==>
normal-eval[(* (+ 5 1) (+ 5 1))] ==>
normal-eval[*] ==> <prim-op *>
normal-eval[(+ 5 1)] ==>

normal-eval[+] ==> <prim-op +>
normal-eval[5] ==> 5
normal-eval[1] ==> 1

==> 6
normal-eval[(+ 5 1)] ==>

normal-eval[+] ==> <prim-op +>
normal-eval[5] ==> 5
normal-eval[1] ==> 1

==> 6
==> 36 155/174

Normal Evaluation Example

normal-eval[(square (* 5 2))] ==>
normal-eval[square] ==> <Closure (x) (* x x)>
==>
normal-eval[(* (* 5 2) (* 5 2))] ==>
normal-eval[*] ==> <prim-op *>
normal-eval[(* 5 2)] ==>

normal-eval[*] ==> <prim-op *>
normal-eval[5] ==> 5
normal-eval[2] ==> 2

==> 10
normal-eval[(* 5 2)] ==>

normal-eval[*] ==> <prim-op *>
normal-eval[5] ==> 5
normal-eval[2] ==> 2

==> 10
==> 100

==> 136
156/174

Normal Evaluation Example

Observe how the same computations are
repeated in the normal evaluation algorithm,

while they were processed only once in
applicative order: for example (* 5 2) when
it is passed to the function square is not

computed before the substitution into the body
of square - which leads to the computation of

(* (* 5 2) (* 5 2)) in normal order
instead of (* 10 10) in applicative order.

157/174

Normal Order Parameter Passing Mode: Call by Name

The normal order strategy of passing arguments
to procedures without pre-computing them is
called call by name - as opposed to the call by

value defined by applicative-eval.

Normal-order evaluation is also called lazy
evaluation because it delays the evaluation of

arguments to the last moment when it is
needed.

158/174

Comparison Applicative Order vs. Normal Order Evaluation

Normal order and applicative order are
different algorithms applied to expressions in
order to compute their value. Do they compute

the same values?

159/174

Comparison Applicative Order vs. Normal Order Evaluation

The Church Rosser Theorem is a fundamental
result in lambda calculus which states that:

when applying reduction rules to terms in the
lambda calculus, the ordering in which the
reductions are chosen does not make a

difference to the eventual result.

160/174

Comparison Applicative Order vs. Normal Order Evaluation

More precisely, if there are two distinct
reductions or sequences of reductions that can
be applied to the same term, then there exists
a term that is reachable from both results, by

applying (possibly empty) sequences of
additional reductions.

161/174

Comparison Applicative Order vs. Normal Order Evaluation

In the context of the substitution model of the
operational semantics of our language which is

a variant of Lambda Calculus rewriting, the
Church Rosser theorem leads to the following

statement:

162/174

Comparison Applicative Order vs. Normal Order Evaluation

If both applicative-eval and normal-eval
terminate (compute a value without an infinite

loop and without exceptions), then they
compute the same value.

163/174

Comparison Applicative Order vs. Normal Order Evaluation

More precisely, the differences between
applicative-eval and normal-eval are:

164/174

Comparison Applicative Order vs. Normal Order Evaluation

• If both orders terminate (no infinite loop
and no exception): They compute the same
value.

• Normal order evaluation may repeat
computations which applicative-eval does
not.

• Whenever applicative order evaluation
terminates, normal order terminates as well.

165/174

Comparison Applicative Order vs. Normal Order Evaluation

• There are expressions where normal order
evaluation terminates, while applicative
order does not.

166/174

Comparison Applicative Order vs. Normal Order Evaluation

Side effects (like printing) are executed in
different ways by applicative-eval and

normal-eval - this fact can be used to identify
the evaluation order of an interpreter.

167/174

Comparison Applicative Order vs. Normal Order Evaluation

In applicative order, side-effects included in
parameters will be executed only once before
the reduction step; in normal order, these

side-effects can be executed 0 to many times -
depending on the logic of the execution, and in

different orders than what is executed in
applicative-order.

168/174

Different Behavior on Loops

Consider the example:

(L3
(define loop (lambda (x) (loop x)))
(define g (lambda (x) 5))
(g (loop 0)))

169/174

Different Behavior on Loops

In normal order, the application (loop 0) is
not evaluated. In applicative order: the call (g

(loop 0)) enters into an infinite loop.

170/174

Different Behavior on Exceptions

Consider the example:

(L3
(define try

(lambda (a b)
(if (= a 0)

1
b)))

(try 0 (/ 1 0)))

171/174

Different Behavior on Exceptions

In normal order, this program returns 1. In
applicative order, it throws a divide by 0

exception.

172/174

Different Behavior on Side-effects

Consider, for example:

(L3
(define f (lambda (x)

(display x)
(newline)
(+ x 1)))

(define g (lambda (x) 5))
(g (f 0)))

173/174

Different Behavior on Side-effects

With applicative-eval, this program prints 0
then returns 5. In contrast, in normal-eval, this
program returns 5 without printing anything.

174/174

