
Principles of Programming Languages
From Recursion to Iteration Through CPS

1/71



The Problem We’re Solving Today

We observed in a previous lecture that with our
L5 interpreter because it is executed in a
JavaScript interpreter which does NOT

implement Tail Call Optimization, we run out of
stack space even when we execute a

tail-recursive function in L5.

2/71



The Problem We’re Solving Today

In this section, we introduce a general method
which models recursion explicitly - so that we

can properly implement tail-recursion as
iteration even when our meta-language does
not support tail call optimization. In other

words, our implementer explains how to turn
tail recursion into iteration.

3/71



The Problem We’re Solving Today

We first illustrate the general approach on a
concrete example (a simple tail recursive

function written in TypeScript, which we turn
into an equivalent iterative program in
JavaScript through gradual semantic

transformations).

4/71



The Problem We’re Solving Today

We then implement the same method on the L5
interpreter and obtain an iterative version of
the interpreter. We finally demonstrate that

when we execute the iterative interpreter on a
tail-recursive L5 program, this yields an

iterative execution process which does not
consume control memory.

5/71



The Problem We’re Solving Today

The end-result is an interpreter which executes
tail-recursive programs as iteration even

though the meta-language does not implement
tail recursion optimization.

6/71



From Recursion to Tail Recursion Using the CPS Transformation

Consider the following recursive function in
TypeScript:

const sum = (n: number): number =>
(n === 0) ? 0 : n + sum(n - 1);

7/71



From Recursion to Tail Recursion Using the CPS Transformation

This function is recursive (because the
recursive call does not appear in tail position).
We know that if we execute it on a large value

for n, it will create a stack overflow error.

8/71



From Recursion to Tail Recursion Using the CPS Transformation

We could instead rewrite this function as a tail
recursive function:

const sumIter = (n: number, acc: number): number =>
(n === 0) ? acc : sumIter(n - 1, n + acc);

9/71



From Recursion to Tail Recursion Using the CPS Transformation

This version is tail-recursive. On an interpreter
that would perform Tail Call Optimization (TCO),
this function would be executed in an iterative
manner. But JavaScript does not perform TCO,
and therefore, this function will also cause a
stack overflow when it is executed on a large

value of n.

10/71



From Recursion to Tail Recursion Using the CPS Transformation

We could, of course, write the same function
directly in an iterative manner:

const sumLoop = (n: number): number => {
let sum = 0;
for (let i = 0; i <= n; i++) {
sum += i;

}
return sum;

}

11/71



From Recursion to Tail Recursion Using the CPS Transformation

What we want to obtain instead is a systematic
transformation process which will turn any

recursive function into a semantically
equivalent function which can be executed

iteratively – that is, without consuming control
memory.

12/71



From Recursion to Tail Recursion Using the CPS Transformation

We demonstrate this transformation as a series
of smaller transformations - starting with the
CPS transformation, which is the key semantic

transformation involved in this overall
compilation of the recursive program into an

equivalent iterative program.

13/71



From Recursion to Tail Recursion Using the CPS Transformation

Note that when we perform the CPS
transformation, we do not transform sum into
sumIter. sumIter implements a different
algorithm than sum. This is the result of the
CPS transformation applied on the TypeScript

code of sum:

14/71



From Recursion to Tail Recursion Using the CPS Transformation

type Cont = (x: number) => number;

const sumCPS = (n: number, cont: Cont): number =>
n === 0 ? cont(0) :
sumCPS(n - 1, (sn1) => cont(n + sn1));

const sumCPS1 = (n: number): number =>
sumCPS(n, (x) => x);

15/71



From Recursion to Tail Recursion Using the CPS Transformation

The resulting program is tail recursive (which is
always the case for a CPS program).

But because JavaScript does not apply TCO,
when we invoke this program, we still obtain a

stack overflow:
sumCPS1(10000);
// RangeError: Maximum call stack size exceeded

16/71



From Procedural Continuations to Concrete Continuations

The reason we still suffer from control memory
consumption is that even for tail calls, the
JavaScript interpreter internally allocates a

stack frame.

17/71



From Procedural Continuations to Concrete Continuations

That is, in the tail call:

sumCPS(5, cont); // ->
sumCPS(4, (sn1) => cont(5 + sn1))

we still allocate a call frame on the stack.

18/71



From Procedural Continuations to Concrete Continuations

In fact, in JavaScript, we always allocate a call
frame whenever we invoke a function -

regardless of the position of the function
application. If we want to avoid allocating call
stacks, we must avoid calling functions. How

can we achieve this for the cases of
continuations?

19/71



From Procedural Continuations to Concrete Continuations

We will achieve this objective in two steps:

• We will transform procedural continuations
into concrete data structures which
implement the same interface as
continuations.

• We will transform the invocation of
continuations into an iterative process
without parameter passing and without
return address.

20/71



From Procedural Continuations to Concrete Continuations

Up to this point, we described continuations as
closures which receive as parameter the result
of the current function and pass this parameter

to the continuation of the code.

21/71



From Procedural Continuations to Concrete Continuations

These closures encapsulate any local variable
that does not depend on the result. When a
procedure is transformed in CPS-form, the

structure of the resulting function is:

22/71



From Procedural Continuations to Concrete Continuations

• A procedure which receives a single
parameter

• All computation which does not invoke a
user-defined procedure (any sequence of
primitive applications) is performed at the
beginning of the computation.

• The result of this computation is then
passed to the continuation.

23/71



From Procedural Continuations to Concrete Continuations

In this context, when we invoke a CPS function,
we construct its continuation as the last

parameter of the CPS function. That is, each
time we invoke a CPS function with a

continuation, we construct a new continuation
instance with the specific parameters this

continuation receives.

24/71



From Procedural Continuations to Concrete Continuations

Within the body of the continuations, we invoke
the continuation passed as a parameter with

different parameters.

25/71



From Procedural Continuations to Concrete Continuations

We, accordingly, can distinguish two contexts in
which continuations participate:

• Places where a new continuation is
constructed with its specific parameters

• Places where a continuation is invoked

26/71



From Procedural Continuations to Concrete Continuations

For example, in the sumCPS example:
type Cont = (x: number) => number;

const sumCPS = (n: number, cont: Cont): number =>
(n === 0) ? cont(0) : // The cont parameter is invoked

// A new continuation is constructed with n and cont
// in its memory. In the body of this continuation,
// the cont continuation is invoked.
sumCPS(n - 1, (sn1) => cont(n + sn1));

const sumCPS1 = (n: number): number =>
// The default identity continuation is
// constructed (it has no memory)
sumCPS(n, (x) => x);

27/71



Concrete Continuations vs. Procedural Continuations

In the first step of the transformation from CPS
to iteration, we transform procedural

continuations into concrete data structures.
This transformation is systematic:

28/71



Concrete Continuations vs. Procedural Continuations

• We identify all the types of continuations
which appear in the program. In our trivial
sum example, there are only two distinct
continuation types, the one constructed
inside sumCPS and the one constructed in
the driver function sumCPS1.

29/71



Concrete Continuations vs. Procedural Continuations

• We give them distinct names: in our case,
Cont1 and IdCont.

30/71



Concrete Continuations vs. Procedural Continuations

• For each type of continuation, we identify
which variables are closed in the
corresponding closure: those are the
variables which must be remembered in the
activation frame of the corresponding
closure. In our case, for Cont1 the variables
captured in the closure are cont and n; for
IdCont, no variables are captured.

31/71



Concrete Continuations vs. Procedural Continuations

• We define a disjoint type union system to
represent these continuations. In our case,
we define the interfaces Cont1 and IdCont
- each one with the captured variables as
members of the interface, a discriminative
tag for each interface, and a parent type
union to represent all possible
continuations in a polymorphic manner.

32/71



Concrete Continuations vs. Procedural Continuations

• Finally, we define a polymorphic function
applyCont which dispatches on the type
of the cont and executes the body of the
continuation according to its type when it is
invoked.

33/71



Concrete Continuations vs. Procedural Continuations

• In all places in the code where a
continuation is constructed, we invoke the
appropriate continuation constructor with
the relevant parameters, and in the places
where a continuation is invoked, we
explicitly call applyCont on the concrete
cont parameter.

34/71



Concrete Continuations vs. Procedural Continuations

With this transformation, we obtain the
following code for the sumCPS example:

35/71



Concrete Continuations vs. Procedural Continuations

type CCont = IdCont | Cont1;

interface Cont1 {tag: "Cont1"; n: number; cont: CCont};
const makeCont1 = (n: number, cont: CCont): Cont1 =>

({tag: "Cont1", n: n, cont: cont});
const isCont1 = (x: any): x is Cont1 => x.tag === "Cont1";

interface IdCont {tag: "IdCont"};
const makeIdCont = (): IdCont =>

({tag: "IdCont"});
const isIdCont = (x: any): x is IdCont => x.tag === "IdCont";

const applyCont = (cont: CCont, val: number): number =>
isIdCont(cont) ? val :
isCont1(cont) ? applyCont(cont.cont, cont.n + val) :
-1;

const sumCPSC = (n: number, cont: CCont): number =>
(n === 0) ? applyCont(cont, 0) :
sumCPSC(n - 1, makeCont1(n, cont)); 36/71



Concrete Continuations vs. Procedural Continuations

const sumCPS2 = (n: number): number =>
sumCPSC(n, makeIdCont());

37/71



Registerization of Concrete Continuations

This implementation of the CPS program with
concrete continuations is still not iterative: we

invoke JavaScript functions each time we
construct a continuation and each time we

invoke one. These are places where we will still
consume stack memory.

38/71



Registerization of Concrete Continuations

We use functions in the sumCPS2 program for 3
reasons:

• To pass the appropriate parameters to the
continuation constructors

• To pass the appropriate parameters to the
applyCont polymorphic method

• To know where to return in the code
execution once the procedures complete so
that we can continue processing

39/71



Registerization of Concrete Continuations

Observe, however, that because we are
operating on code in CPS form, the function

calls are all in tail position. This means that we
do not need to remember where to return to,
we can simply go to the next call and never

return.

40/71



Registerization of Concrete Continuations

We observe that the continuation constructors
all have the same structure – they simply
initialize the fields of a record with the
parameters. Hence, we are ensured that
invoking a continuation constructor will

consume a single stack frame and will not
chain to further function calls.

41/71



Registerization of Concrete Continuations

In contrast, applyCont often yields recursive
chains of function calls.

42/71



Registerization of Concrete Continuations

In this step, we remove the need to use a stack
frame to pass parameters to the functions

involved in the CPS program.

43/71



Registerization of Concrete Continuations

Instead, we define a finite set of registers - that
is, a set of variables of the appropriate types
which are defined over the scope of the whole
program (all the functions involved in the CPS
transformation). There is one register for each
parameter of all the continuation constructors

and the applyCont function.

44/71



Registerization of Concrete Continuations

Instead of invoking a function by passing
parameters - we initialize the corresponding
registers and then call a function of zero

parameters. In our example, this
transformation yields the following program:

45/71



Registerization of Concrete Continuations

• We define the registers nREG and contREG
for the parameters of the Cont1 constructor

• We define the register valREG for the
parameter to the applyCont function

• We initialize the registers in the driver
function sumREG1

• We transform each function invocation with
parameters into a sequence of assignments
to the registers and then invocation of the
function without parameters.

46/71



Registerization of Concrete Continuations

The result of this transformation can be found
here.

47/71

https://github.com/bguppl/interpreters/blob/master/src/cps/sum.ts#L76


Why Registers Can Be Safely Overridden

The set of registers we defined replace
activation frames in a stack. Consider why in
the current state of our transformation, it is

safe to use a single flat set of registers instead
of stacked activation frames.

48/71



Why Registers Can Be Safely Overridden

The reason is that in CPS form, when we enter a
user-defined function, we read the parameters
(in our case from the registers), execute a set of
primitive computation steps, and then move on

to the tail call.

49/71



Why Registers Can Be Safely Overridden

In particular:

• After a tail call, we do not return to the
function from which we invoked the tail call.
This means that we do not need to read
values from the activation frame anymore
after the tail call is entered.

• It is, therefore, safe to override the current
register values with other values that will be
consumed in the tail call.

50/71



Why Registers Can Be Safely Overridden

Realize that the registerization transformation
is safe only on code in CPS form.

51/71



Why Registers Can Be Safely Overridden

Observe the code in the sumREG1 program. We
still invoke unbounded functions (that is,

functions which can invoke more user defined
functions in an unbounded chain of calls):

• applyContReg()
• sumCPSReg()

52/71



Why Registers Can Be Safely Overridden

These functions have zero-argument by
construction, but their invocation still

consumes stack frames. In the last step of the
transformation, called pipelining, we now
transform these calls into an explicit loop.

53/71



From Registers to Iterative Execution

In the register version of the program, we still
invoke zero-parameter functions, all in tail
positions. We want to avoid calling functions
altogether to avoid consuming activation

frames on the stack.

54/71



From Registers to Iterative Execution

The solution we introduce is to convert tail calls
with no parameters into the equivalent of a
“computed GOTO” instruction in a very simple
“abstract machine”. An abstract machine has a
set of pre-defined instructions and a set of

registers.

55/71



From Registers to Iterative Execution

In our case, these instructions are the different
types of continuations we can compute in the
process of the function execution. We add a
single instruction to indicate that we have

reached the end of the computation and that
the Virtual Machine can shutdown and return

the value of a specific register.

56/71



From Registers to Iterative Execution

To encode the name of the instruction of the
next command to be executed, we introduce an
additional register - traditionally called the
Program Counter (or PC). The type of this
register is an enumeration of the possible
continuation types. We call this type the
InstructionSet of the virtual machine.

57/71



From Registers to Iterative Execution

Finally, we define a VM() procedure which
implements the logic of the virtual machine:

• Fetch: the instruction to be executed and
the corresponding registers

• Decode: dispatch the name of the
instruction to the appropriate sequence of
primitive calls

• Execute: execute the sequence of primitive
calls and update the registers to prepare for
the next instruction

58/71



From Registers to Iterative Execution

All procedures in the implementation are
defined in the scope of the registers. To invoke
a new procedure, we end each call by setting
pcREG to the name of the procedure we want
to execute next. Setting pcREG in tail position
is equivalent to invoking a procedure in tail

position.

59/71



From Registers to Iterative Execution

This transformation of calls of procedures in
tail position to an explicit loop and dispatch

over the PC register yields the following version
of the program.

60/71

https://github.com/bguppl/interpreters/blob/master/src/cps/sum.ts#L110


The Registerized VM is Iterative

The resulting program is an iterative
implementation of the original program.

Because the original program was
tail-recursive, the resulting program is also

iterative.

61/71



The Registerized VM is Iterative

We confirm this through empirical tests:
sum(10000); // Stack overflow
sumCPS1(10000); // Stack overflow
sumCPS2(10000); // Stack overflow
sumREG1(10000); // Stack overflow
sumREG2(10000); // 100010000 / 2 = 50005000

62/71



Transforming the L5 Interpreter into an Iterative Interpreter

This was quite a lot of work to turn a single tail
recursive procedure into an iterative program.
The benefit of this method is that, by relying on
the properties of the CPS transformation, we

can transform any program into a
corresponding iterative program.

63/71



Transforming the L5 Interpreter into an Iterative Interpreter

In particular, we can transform the code of the
L5 interpreter into an iterative interpreter which

does not consume JavaScript stack.

64/71



Transforming the L5 Interpreter into an Iterative Interpreter

Naturally, this program will still consume some
memory when it executes a recursive program.
But this memory will be managed explicitly, in

the form of a concrete continuation data
structure. It will not rely implicitly on the stack

of the meta-language (JavaScript).

65/71



Transforming the L5 Interpreter into an Iterative Interpreter

As a consequence, if we execute an L5
tail-recursive program, this iterative interpreter
will consume bounded control memory - as

expected of a Scheme interpreter.

66/71



Transforming the L5 Interpreter into an Iterative Interpreter

We illustrate this transformation in multiple
steps:

67/71



Transforming the L5 Interpreter into an Iterative Interpreter

• L5 is the original recursive interpreter. It is
recursive because the various evaluation
methods are by definition recursive over the
inductive structure of the input AST.

68/71



Transforming the L5 Interpreter into an Iterative Interpreter

• L6 is the CPS transformation of L5. We
simply apply the rules of the CPS
transformation over the code of L5 in
TypeScript. In this CPS transformation, we
only include procedures which can lead to
unbounded execution. Any user-defined
procedure which has bounded execution is
left unchanged (for example,
applyPrimitive and all the procedures
manipulating the AST are left unchanged)

69/71



Transforming the L5 Interpreter into an Iterative Interpreter

• L7a is the transformation of L6 with explicit
continuation ADT but still using closures for
the ADT implementation

• L7b turns continuations into concrete data
structures

• L7c introduces the iterative version of the
interpreter with registers and explicit
dispatch according to pcREG.

70/71



Transforming the L5 Interpreter into an Iterative Interpreter

To validate the transformation, we confirm that
the evaluation of the following L7 program

completes without stack overflow:
const evalP = (x: string): Result<Value> =>
bind(parseL5(x), evalProgram);

expect(evalP(`
(L5 (define sumCPS

(lambda (n cont)
(if (= n 0)

(cont 0)
(sumCPS (- n 1)

(lambda (sn1) (cont (+ n sn1)))))))
(sumCPS 1000 (lambda (x) x)))`))

.to.deep.equal(makeOk(500500)); 71/71


