
Principles of Programming Languages
Logic Programming

1/73

Introduction

We introduced a restricted form of Logic
Programming called Relational Logic

Programming in the previous lecture. We noted
that RLP is decidable (and hence not

Turing-complete). RLP is still expressive enough
to describe full relational algebra operations
extended with recursive operations (such as

transitive closure).

2/73

Introduction

We now move on to full Logic Programming -
and present a programming language which is
Turing-complete. The increment from RLP to LP

is remarkably small in terms of language
design: we simply introduce recursive terms,
using a new compound syntactic construct we
call a functor. Functors enable LP to describe

recursive data structures.

3/73

Introduction

As a consequence of introducing recursive
terms:

4/73

Introduction

1. A more complex unification operation must
be defined - we must introduce the
occurs-check restriction to avoid loops.

5/73

Introduction

2. The language becomes only partially
decidable. That is, while the answer to a
query in relational logic programming can
always be decided to be a success or a
failure, logic programming is partially
decidable, like all other general purpose
programming languages.

6/73

Introduction

We present the updated syntax (concrete and
abstract) to support recursive terms and the
adjustments required in the operational
semantics to extend RLP into LP. We then

describe how to model abstract data structures
in Logic Programming, and specifically how to

manage lists.

7/73

Syntax of Complex Terms with Functors

The only difference between the syntax of Logic
Programming and the syntax of Relational Logic
Programming is the addition of a new kind of a
constant symbol: Functor (function symbol). It

enriches the set of terms so that they can
describe structured data.

8/73

Definition: Terms in Logic Programming

The syntax of terms is now inductive:

1. Base case: Individual constant symbols and
variables are terms (these are the only
cases that exist in RLP).

2. Inductive step: For terms t1, . . ., tn and a
functor f, f(t1, ..., tn) is a term.

9/73

Examples of Composite Terms

• '[|]'(a, []) describes the list [a]. []
is an individual constant, standing for the
empty list. The '[|]' functor has a
syntactic sugar notation as an infix operator
|: '[|]'(a, []) is written [a | []].

10/73

Examples of Composite Terms

• '[|]'(b, '[|]'(a, [])) is the list
[b, a], or [b | [a | []]]. The syntax
[b, a] uses the printed form of lists in
Prolog.

• '[|]'('[|]'(a, []), '[|]'(b,
'[|]'(a, []))) – the list [[a], b, a],
or [[a | []] | [b | [a | []]]] .

11/73

Examples of Composite Terms

• time(monday, 12, 14)
• street(alon, 32)
• tree(Element, Left, Right) – a
binary tree, with Element as the root, Left
and Right as its sub-trees.

• tree(5, tree(8, void, void),
tree(9, void, tree(3, void,
void)))

12/73

Atomic Formulas with Composite Terms

The arguments in atomic formulas can now be
composite terms. For example:

• father(abraham, isaac)
• p(f(f(f(g(a, g(b, c))))))
• ancestor(mary,
sister_of(friend_of(john)))

• append([a, b], [c, d], [a, b, c,
d])

13/73

Functor Arity

Every functor has an arity, that is, it specifies
the number of arguments the functor expects.

In the examples above:

• The arity of '[|]' is 2
• The arity of sister_of is 1
• The arity of time is 3
• The arity of street is 2

14/73

Nested Functors vs. Predicates

Functors can be nested: Terms might have
unbound depth: f(f(f(g(a, g(b, c))))).
The number of different atomic formulas that
can be constructed from a given finite set of
predicate, functor and individual constant
symbols is unbounded - in contrast to

Relational Logic Programming. (Observe that
the BNF of RLP presented in the previous

Section is not recursive).

15/73

Nested Functors vs. Predicates

In contract to terms, predicate symbols cannot
be nested:

• p(f(f(f(g(a, g(b, c)))))) – p is a
predicate symbol, while f and g are
functors.

• ancestor(mary,
sister_of(friend_of(john))) –
ancestor is a predicate symbol, and
sister_of and friend_of are functors.

16/73

Nested Functors vs. Predicates

• course(ppl, time(tuesday, 14,
16), location(zoom)) – course is a
predicate symbol, and time and location
are functors.

• address(street(alon, 32),
shikun_M, tel_aviv, israel) –
address is a predicate symbol, and
street is a functor.

17/73

Nested Functors vs. Predicates

The syntax of terms and of atomic formulas is
identical. They differ in the position (context) in

statements:

• Terms are arguments to either terms and to
predicates.

• Atomic formulas appear inside rules and
facts.

18/73

Formal Syntax for Composite Terms

To support composite terms, we add the
following concrete syntax rules:

<term> ::= <constant> | <variable> | <composite-term>
<composite-term> ::= <functor> '(' (<term>',')* <term>')'
<functor> ::= <constant>

19/73

Formal Syntax for Composite Terms

The corresponding abstract syntax for terms is
adapted is:

<term>: <constant> | <variable> | <composite-term>
<composite-term>: {functor: <constant>, args: <term>[]};

This last rule is the first recursive data type in
the AST of Logic Programming we have met.

20/73

Operational Semantics

The answer-query abstract interpreter,
presented in the previous lecture on Relational

Logic Programming, applies to Logic
Programming as well. The only difference is
that the unification algorithm has to be
extended to handle composite terms.

21/73

Unification of Composite Terms

The presence of function symbols complicates
the unification step in the abstract interpreter.
Recall that the rule selection procedure tries to
unify a query goal (an atomic formula) with the
head of the selected rule (an atomic formula).

The unification operation, if successful,
produces a substitution (most general unifier)

for the variables in the atomic formulas.

22/73

Unification of Composite Terms

The notion of substitution is modified to
support composite terms by adding the

occurs-check condition:

23/73

Unification of Composite Terms

Definition: Substitution with Composite Terms
A substitution s is a finite mapping from
variables to terms, such that s(X) does not
include X. All the rest of the substitution and
unification terminology stays unchanged.

24/73

Unification of Composite Terms

Observe the difference with the definition we
had for RLP:

25/73

Unification of Composite Terms

Definition: Substitution with Composite Terms
A substitution s in logic programming involves
logic variables as variables and logic terms as
values, such that s(X) ̸= X.

26/73

Unification of Composite Terms

• For atomic terms, the condition is the
simple s(X) ̸= X

• For composite terms, the condition is: s(X)
does not include X

27/73

Unification of Composite Terms

Testing the condition “s(X) does not include X”
is an expensive computational operation (it is
an unbounded operation because composite

terms can have unbounded depth).
Occurs-check makes unification expensive.

28/73

Examples of Unification with Composite Terms

unify(member(X, tree(X, Left, Right)),
member(Y, tree(9, void, tree(3, void, void))))

-> { X = 9, Y = 9, Left = void, Right = tree(3, void, void)}

unify(member(X, tree(9, void, tree(E1, L1, R1)),
member(Y, tree(Y, Z, tree(3, void, void))))

-> { X = 9, Y = 9, Z = void, E1 = 3, L1 = void, R1 = void }

29/73

Examples of Unification with Composite Terms

unify(t(X, f(a), X),
t(g(U), U, W))

-> { X = g(f(a)), U = f(a), W = g(f(a)) }

unify(t(X, f(X), X),
t(g(U), U, W))

-> FAIL (occurs-check): X = g(U), U = f(X), X = g(f(X))

30/73

Examples of Unification with Composite Terms

unify(append([1, 2, 3], [3, 4], List),
append([X | Xs], Ys, [X | Zs]))

-> { X = 1, Xs = [2, 3], Ys = [3, 4], List = [1 | Zs] }

unify(append([1, 2, 3], [3, 4], [3, 3, 4]),
append([X | Xs], Ys, [Xs | Zs]))

-> FAIL: Xs = [2, 3], Xs = 3

31/73

Expressivity and Decidability of Logic Programming

Logic Programming has the expressive power of
Turing machines. That is, every computable

program can be written in Logic Programming.
In particular, every Scheme program can be

written in Prolog, and vice versa.

32/73

Expressivity and Decidability of Logic Programming

Logic Programming is only partially decidable -
unlike Relational Logic Programming. That is,
the problem “Is Q provable from P”, denoted
P ⊢ Q, is partially decidable. The finiteness
argument of Relational Logic Programming
does not apply here since in the presence of

recursive terms, the number of different atomic
formulas is unbounded (since terms can be

nested up to unbounded depth).

33/73

Expressivity and Decidability of Logic Programming

Therefore, terminating proofs can have an
unbounded length - even with a finite
vocabulary of functors, predicates and

constants.

34/73

Defining Recursive Data Structures with Logic Programming

Composite terms allow us to define abstract
data types in LP. This requires some change of
habit though - because we do not compute
terms with functions that construct new

complex values. Instead, when we program in
LP, we define relations among values. When we
check whether two values stand in relation, we
instantiate some logical variables to make the
predicate hold. When this happens, we end up

constructing complex values.
35/73

Defining Recursive Data Structures with Logic Programming

Let us consider this strategy with a Tree data
structure.

36/73

Trees in LP

The predicate binary_tree corresponds to
the membership predicate of values to the
binary_tree datatype. It holds only for
values which belong to the tree datatype.

Values of this type are composite terms with
the functor tree/3. This functor has no

primitive (pre-defined) semantic. We define its
semantic by using it in specific predicates.

37/73

Trees in LP

% Signature: binary_tree(T)/1
% Purpose: T is a binary tree.
binary_tree(void).
binary_tree(tree(Element, Left, Right)) :-

binary_tree(Left),
binary_tree(Right).

38/73

Trees in LP

We define recursive procedures over such
composite values as relations. The relation

tree_member(X, T) holds when X is bound
to a value that occurs as one of the nodes in T.

% Signature: tree_member(X, T)/2
% Purpose: X is a member of T.
tree_member(X, tree(X, _, _)).
tree_member(X, tree(_, Left, _)) :-

tree_member(X, Left).
tree_member(X, tree(_, _, Right)) :-

tree_member(X, Right).

39/73

Example Queries with Trees

?- tree_member(g(X),
tree(g(a),

tree(g(b), void, void)
tree(f(a), void, void))).

X = a;
X = b;
false

40/73

Example Queries with Trees

?- tree_member(a, Tree).
Tree = tree(a, _11426, _11428) ;
Tree = tree(_12086, tree(a, _12096, _12098), _12090) ;
...

41/73

Example Queries with Trees

Observe that in the first query above, the
parameter X contains a variable, while the
parameter Tree is completely bound to

constants (no variables). In contrast, in the
second query, X is bound to a constant (a)

while Tree is bound to a variable.

42/73

Example Queries with Trees

The same procedure can be invoked in different
ways - which are called modes - depending on
which parameter is bound to constants and

which is bound to variables.

43/73

Example Queries with Trees

In this example, the procedure tree_member,
when it is invoked in the second mode with a
free variable Tree is used as a generator of
values. (In this example, the procedure is the

generator of all possible trees which contain a.)

44/73

Church Numeral Encoding

In LP, we did not introduce number terms - only
symbols. Prolog extends LP with arithmetic and
numeric terms. There is, however, a theoretical
method to represent natural numbers using

only symbols - called Church Numeral
Encodings.

45/73

Church Numeral Encoding

In Church encoding, natural numbers are
represented by terms constructed from the

symbol 0 and the functor s/1:

• 0 denotes zero
• s(0) denotes one
• s(s(s(...s(0)...))) n times denotes n
• In general, if N is the Church encoding of n,
then s(N) is the Church encoding of n+ 1.

46/73

Church Numeral Encoding

Membership predicate:
% Signature: natural_number(N)/1
% Purpose: N is a natural number.
natural_number(0).
natural_number(s(X)) :- natural_number(X).

47/73

Church Numeral Encoding

Arithmetic Operations on Church Numerals:
% Signature: plus(X, Y, Z)/3
% Purpose: Z is the sum of X and Y.
plus(X, 0, X) :- natural_number(X).
plus(X, s(Y), s(Z)) :- plus(X, Y, Z).

48/73

Church Numeral Encoding

Example queries:
?- plus(s(0), 0, s(0)).
true.

By changing the mode of the query, we
compute subtraction:

?- plus(X, s(0), s(s(0)).
X = s(0).

49/73

Church Numeral Encoding

By using a more abstract mode, we obtain a
generator of pairs of numbers:
?- plus(X, Y, s(s(0))).
X = 0, Y = s(s(0));
X = s(0), Y = s(0);
X = s(s(0)), Y = 0.

50/73

Church Numeral Encoding

Natural number binary relation - Less than or
equal:

% Signature: le(X,Y)/2
% Purpose: X is less or equal Y.
le(0, X) :- natural_number(X).
le(s(X), s(Z)) :- le(X, Z).

51/73

Church Numeral Encoding

Natural numbers multiplication:
% Signature: times(X,Y,Z)/2
% Purpose: Z = X*Y
times(0, X, 0) :- natural_number(X).
times(s(X), Y, Z) :-

times(X, Y, XY),
plus(XY, Y, Z).

52/73

Lists

Syntax for Lists:
Lists are defined inductively - using a special

infix operator (|) and a special notation
[a, b, c] as syntactic sugar for nested

'[|]'/2 terms:

• [] is the empty list.
• [Head | Tail] is syntactic sugar for the
composite term '[|]'(Head, Tail),
where Tail is a list term.

53/73

Lists

Simple syntax for bounded length lists:

• [a | []] = [a]
• [a | [b | []]] = [a, b]

54/73

Lists

Membership predicate:
list([]).
list([_ | Xs]) :- list(Xs).

55/73

Lists

List Membership:
% Signature: member(X, List)/2
% Purpose: X is a member of List.
member(X, [X|_]).
member(X, [_|Ys]) :- member(X, Ys).

56/73

Lists

?- member(a, [b, c, a, d]). % checks membership
?- member(X, [b, c, a, d]). % takes an element

% from a list
?- member(b, Z). % generates a list containing b

57/73

Lists

List Concatenation:
% Signature: append(List1, List2, List3)/3
% Purpose: List3 is the concatenation of
% List1 and List2.
append([], Xs, Xs).
append([X | Xs], Y, [X | Zs]) :- append(Xs, Y, Zs).

58/73

Lists

% concatenation of two lists
?- append([a,b], [c], X).

% finds a difference between lists
?- append(Xs, [a,d], [b,c,a,d]).

% divides a list into two lists
?- append(Xs, Ys, [a,b,c,d]).

59/73

Lists

List Selection using append:
% (a) List prefix and suffix:
prefix(Xs, Ys) :- append(Xs, _, Ys).
suffix(Xs, Ys) :- append(_, Xs, Ys).

% (b) Redefine member:
member(X, Ys) :- append(_, [X | _], Ys).

60/73

Lists

List Selection using append:
% (c) Adjacent list elements:
adjacent(X, Y, Zs) :- append(_, [X, Y | _], Zs).

% (d) Last element of a list:
last(X, Ys) :- append(_, [X], Ys).

61/73

Lists

List Reverse:
% (a) A recursive version:
% Signature: reverse(List1, List2)/2
% Purpose: List2 is the reverse of List1.
reverse([], []).
reverse([H | T], R) :-

reverse(T, S),
append(S, [H], R).

62/73

Lists

?- reverse([a, b, c, d], R).
R = [d, c, b, a]

63/73

Lists

But, what about the other mode of this
predicate:

?- reverse(R, [a, b, c, d]).

64/73

Lists

Starting to build the proof tree, we see that the
second query is:

reverse(T1, S1), append(S1, [H1], [a, b, c, d]).

65/73

Lists

This query fails on the first rule, and needs the
second. The second rule is applied four times,
until four elements are unified with the four

elements of the input list.

66/73

Lists

We can try reversing the rule body:
reverse([H | T], R) :-

append(S, [H], R),
reverse(T, S).

67/73

Lists

The new version gives a good performance on
the last direction, but poor performance on the

former direction.

68/73

Lists

Conclusion: Rule body ordering impacts the
performance in various directions.

69/73

Lists

Typical error: Wrong “assembly” of resulting
lists:

wrong_reverse([H | T], R):-
wrong_reverse(T, S),
append(S, H, R).

70/73

Lists

% (b) an iterative version:
% Signature: reverse(List1, List2)/2
% Purpose: List2 is the reverse of List1.
% This version uses an additional
% reverse helper procedure, that uses
% an accumulator.
reverse(Xs, Ys) :-

reverse_help(Xs, [], Ys).
reverse_help([X | Xs], Acc, Ys) :-

reverse_help(Xs, [X | Acc], Ys).
reverse_help([], Ys, Ys).

71/73

Lists

The length of the single success path is linear
in the list length, while in the former version it

is quadratic.

72/73

Lists

The reverse_help procedure is a helper
procedure that should not reside in the global
name space. Unfortunately, Logic Programming
does not support nesting of name spaces (like
Scheme with letrec). All names reside in the

global space.

73/73

