
Principles of Programming Languages
Data Types and Operations on Data
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Previously

In previous sections, we reviewed tools a
programming language provides that help
programmers design set of values that have
common properties. The concrete form is a

type language with which we can express type
annotations. These type annotations denote

sets of values. They are associated to variables
or function parameters and function return

values.
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Previously

Type definitions help us:

• Enable type checking
• Document our intentions
• Structure the code that operates on
complex values in a way that reflects the
structure of the data type.
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Today

Reversely, programmers design and name types
for sets of values that will be processed by the
same set of functions. That is, type definitions

allow the definition of uniform functional
interfaces.
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Today

We illustrate this point through 4 examples:

• Homogeneous array types and the
sequence interface (map, filter, reduce)

• Modeling trees
• Mutable data types in FP
• Disjoint types and disjoint unions to enable
uniform functional interfaces
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Homogeneous Array Types and the Sequence Interface

Array values can be homogeneous (all items
have the same type) or heterogeneous (items

of different types appear).
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Homogeneous Array Types and the Sequence Interface

The natural way to operate over arrays is to use
the sequence interface - that is, the set of

higher-order functions which can be applied on
arrays. For example:

• map(f, array)
• filter(pred, array)
• reduce(reducer, initial, array)
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Homogeneous Array Types and the Sequence Interface

When we analyze the type of these functions,
we realize that such operations will be easy
and natural if the type of the function passed
as a parameter is a simple type. For example:

import { map } from "ramda";

let arr = [1, 2, 3];
map(x => x * x, arr);
// => [1, 4, 9]
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Homogeneous Array Types and the Sequence Interface

This operation over the array works well
because the type of the mapper function is

simple and can be derived from the type of the
array:

• arr is of type number[]
• x => x * x is a function of type
number => number, so it can be applied
to all elements in arr.

• the resulting array is also of type number[]
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Homogeneous Array Types and the Sequence Interface

Similarly, if we use a mapper function of type
number => boolean - we know the return

value of map will be boolean[]:

import { map } from "ramda";

let arr = [1, 2, 3];
map(x => x > 2, arr);
// => [false, false, true]
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Homogeneous Array Types and the Sequence Interface

Operating over a heterogeneous array like
[1, "a", true] would make the usage of
these functions much more challenging -

because the mapper function would need to
know what to do for each type of parameter.
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Homogeneous Array Types and the Sequence Interface

Homogeneous array types encourage the use of
a simple functional interface - including map,
filter, reduce. This functional interface (set
of functions which operate on the same data
structure) receive a function parameter with a
simple type signature and abstract many forms
of loops over repeated values of the same type.
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Modeling Trees with Types

Let us review the definition of a binary tree:

interface BinTree<T> {
root: T;
left?: BinTree<T>;
right?: BinTree<T>;

}
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Modeling Trees with Types

When we write operations that operate over
such trees, we must write code that operates
according to the expected structure of the

values in this type.

For example, let us write a function that
traverses a BinTree in Depth-First order:
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Modeling Trees with Types

const dfs: <T>(t: BinTree<T>) => void = t => {
console.log(t.root);
if (t.left !== undefined) {

dfs(t.left);
}
if (t.right !== undefined) {

dfs(t.right);
}

};
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Modeling Trees with Types

The structure of this function follows the
structure of the type definition - when we

process a value of type BinTree, we know that
accessing the field t.root is safe (will not

return undefined or throw an exception). To
access t.left we must first check whether it
is undefined since the type allows for this
(base case of the recursion). If it is not, we
know it must be a value of type BinTree.
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Modeling Trees with Types

In addition to these assurances, we also know
that after checking these conditions we have
checked all possible configurations of values
(that is, the function exhaustively covers all

possible BinTree values).
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Modeling Trees with Types

Let us consider a variant task where we actually
build values of type BinTree:
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Modeling Trees with Types

type N = number;

const square: (x: N) => N = x => x * x;
const sqrTree: (t: BinTree<N>) => BinTree<N> = t =>

t.left !== undefined && t.right !== undefined ?
{ root: square(t.root),
left: sqrTree(t.left),
right: sqrTree(t.right) }

: t.left !== undefined && t.right === undefined ?
{ root: square(t.root), left: sqrTree(t.left) }

: t.left === undefined && t.right !== undefined ?
{ root: square(t.root), right: sqrTree(t.right) }

: { root: square(t.root) };
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Modeling Trees with Types

let t = {
root: 2,
left: {
root: 3,
left: { root: 4}

},
right: {
root: 5,
right: { root: 6 }

}
};
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Modeling Trees with Types

sqrTree(t);
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Modeling Trees with Types

{ root: 4,
left: { root: 9, left: { root: 16 } },
right: { root: 25, right: { root: 36 } } }
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Modeling Trees with Types

The function sqrTree operates over a
BinTree value and creates a new BinTree

return value. It considers all possible
configurations of BinTree and invokes the
function sqrTree recursively on each child

value accordingly.
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Modeling Trees with Types

In this case as well - type analysis allows us to
verify that all accesses to the fields of the

BinTree value are safe and that all recursive
calls pass values of the right type as

parameters. In addition, we can verify that the
function is exhaustive in checking all possible

configurations for the value.
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Modeling Trees with Types

We can relax the type checking - and accept to
receive values of type undefined in addition -
yielding slightly shorter and more readable

code:
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Modeling Trees with Types

type N = number;

const square: (x: N) => N = x => x * x;
const sqrTree2: (t?: BinTree<N>) => BinTree<N> | undefined =

t => t === undefined ? undefined
: { root: square(t.root),

left: sqrTree2(t.left),
right: sqrTree2(t.right) };
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Modeling Trees with Types

let t = {
root: 2,
left: {
root: 3,
left: { root: 4}

},
right: {
root: 5,
right: { root: 6 }

}
};

27/91



Modeling Trees with Types

sqrTree2(t);
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Modeling Trees with Types

{
root: 4,
left: { root: 9,

left: { root: 16,
left: undefined,
right: undefined },

right: undefined },
right: { root: 25,

left: undefined,
right: { root: 36,

left: undefined,
right: undefined } }

}
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Modeling Trees with Types

Observe that in this version:

• We extended the expected values of type
BinTree to also include the value
undefined.

• We explicitly test for this value as the first
base case in the recursive function
sqrTree2.
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Modeling Trees with Types

Observe that in this version:

• The recursive calls are now simplified as we
don’t need to avoid the recursive calls with
a value undefined.

• The return value has values marked
explicitly as undefined - these are
semantically equivalent to absent values -
but in the syntax of the object, they still
appear.

31/91



Modeling Trees with Types

We can get rid of the undefineds using a
simple idiom:

JSON.parse(JSON.stringify(sqrTree2(t)));
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Modeling Trees with Types

The difference between the two versions is a
matter of style preference. In general, the

presence of undefined values complicates type
analysis, but it is difficult to avoid dealing with

it explicitly.
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Mutable (Persistent) Data Types in FP

We indicated earlier that FP encourages
immutable variables and data structures to
achieve the goals of determinism (calling the

same function with the same arguments should
return the same value) and safe concurrency
(avoid shared mutable data across threads).
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Mutable (Persistent) Data Types in FP

Yet, some data types are mutable in their
definition. Consider the example of a stack. It is
defined as a container of values that enforces a
specific access pattern through an interface:
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Mutable (Persistent) Data Types in FP

• push(x): modifies the stack by adding a
new value x on top of it.

• pop(): modifies the stack by removing the
top value of the stack and returning its
value.

• empty(): determines whether the stack is
empty.
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Mutable (Persistent) Data Types in FP

As was discussed in SPL, in OOP, it is useful to
split the Stack interface into Queries (functions
that only return information about the data

structure without changing it) and Commands
(functions which only modify the data structure
and do not return any value). Such distinction

makes writing tests much easier.
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Mutable (Persistent) Data Types in FP

To adopt this distinction, we split the pop()
method into two distinct methods:

• peek(): returns the value of the top
element in the stack (this is a query
method).

• pop(): modifies the stack by removing the
top element (this is a command method -
that just has a side effect and no return
value).
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Mutable (Persistent) Data Types in FP

This definition is inherently procedural - as it
defines the data type in terms of mutation
(with the commands push() and pop()) in

addition to the queries peek() and empty().
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Mutable (Persistent) Data Types in FP

Note that according to this methodology, even
the queries are not pure functions - because
they are not deterministic. Let us illustrate

these points with a simple implementation of
Stacks in TypeScript:
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Mutable (Persistent) Data Types in FP

type Stack<T> = T[];

const makeStack: <T>(a: T[]) => Stack<T> =
a => a;

const peek: <T>(s: Stack<T>) => T =
s => s[0];

const empty: <T>(s: Stack<T>) => boolean =
s => s.length === 0;

const push: <T>(s: Stack<T>, t: T) => void =
(s, t) => { s.unshift(t); };

const pop: <T>(s: Stack<T>) => void =
s => { s.shift(); }; 41/91



Mutable (Persistent) Data Types in FP

This implementation relies on an array
encoding for Stack values. It relies on generic
data types in TypeScript so that we can use it

for Stacks of any type - as long as it is a
homogeneous stack.
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Mutable (Persistent) Data Types in FP

It relies on the fact that arrays in JavaScript are
mutable - and implements push() using the

primitive unshift(x) operation on arrays, and
pop() using the primitive shift() operation.

(We skipped checking the preconditions to
simplify the presentation.)
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Mutable (Persistent) Data Types in FP

Note the specific style: commands (functions
that have a side-effect - in this case push()
and pop()) have no return value - we mark

them as void in TypeScript.
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Mutable (Persistent) Data Types in FP

In contrast, queries (functions that have no
side-effect and only return information about
the data structure - in this case peek() and

empty()) return a value.
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Mutable (Persistent) Data Types in FP

Given that the underlying data type is mutable,
we cannot obtain deterministic behavior:
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Mutable (Persistent) Data Types in FP

let s = makeStack([1, 2, 3]);
push(s, 0);
console.log(peek(s)); // => 0
pop(s);
console.log(peek(s)); // => 1
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Mutable (Persistent) Data Types in FP

The same operation peek(s) on the same
variable s returns different values when

mutation has occurred between the two calls.
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Functional Stack: Step 1

Can we define a functional data structure for
the Stack data type?
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Functional Stack: Step 1

For example, can we define a Stack data
structure that operates as an immutable data
structure, while still offering the same interface

to its clients?
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Functional Stack: Step 1

The key change that is required to obtain such
immutable functional data types is to modify
the commands so that instead of mutating the
existing data structure and “returning” void,
the commands will return a new copy of the

data structure.
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Functional Stack: Step 1

This imposes first a change on the type of the
functions, next a change on the client side. Let
us illustrate this first round of changes (which
we will find out is necessary but not sufficient):

52/91



Functional Stack: Step 1

type Stack<T> = T[];

const makeStack: <T>(a: T[]) => Stack<T> =
a => a;

const peek: <T>(s: Stack<T>) => T =
s => s[0];

const empty: <T>(s: Stack<T>) => boolean =
s => s.length === 0;

const push: <T>(s: Stack<T>, t: T) => Stack<T> =
(s, t) => { s.unshift(t); return s; };

const pop: <T>(s: Stack<T>) => Stack<T> =
s => { s.shift(); return s; }; 53/91



Functional Stack: Step 1

This modification in the signature of the
commands requires clients to change as well:
each time a command is invoked, we must bind
the return value to a new variable so that it can

be used further:
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Functional Stack: Step 1

let s1 = makeStack([1, 2, 3]);
let s2 = push(s1, 0);
console.log(peek(s2)); // => 0
let s3 = pop(s2);
console.log(peek(s3)); // => 1
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Value Aliasing

In this new style, we do not observe direct
mutation - the calls seem to be deterministic.

Unfortunately, this is an illusion:
const s1 = makeStack([1, 2, 3]);
const s2 = push(s1, 0);
const s3 = pop(s2);
console.log(peek(s1)); // => 1
pop(s1);
console.log(s1); // => [2, 3]
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Value Aliasing

The implementation relies on JavaScript arrays
- which are internally mutable. We did not
prevent this mutation by just changing the

signature of the methods, because in the body
of the commands we still call mutators on the

internal representation of the stack.
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Value Aliasing

The situation is even worse because we have
created a very risky situation called variable
aliasing - the stacks s2 and s3 share in

memory cells that are used by s1. As a result,
operations on s1 end up modifying the state of

s2.
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Value Aliasing

The reason the stacks s2 and s3 were changed
when we applied mutation on s1 is because
the 3 stacks actually share parts of their value

in memory - because arrays in JavaScript
behave like pointers to values in C++.
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Functional Stack: Step 2

The solution to this problem is to require that
commands actually copy the data structure
when they need to modify it - so that each

returned value is indeed a new value - and not
an alias of the previous value.
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Functional Stack: Step 2

type Stack<T> = T[];

const makeStack: <T>(a: T[]) => Stack<T> =
a => a;

const peek: <T>(s: Stack<T>) => T =
s => s[0];

const empty: <T>(s: Stack<T>) => boolean =
s => s.length === 0;

const push: <T>(s: Stack<T>, t: T) => Stack<T> =
(s, t) => [t].concat(s);

const pop: <T>(s: Stack<T>) => Stack<T> =
s => s.slice(1); 61/91



Functional Stack: Step 2

Let us verify that this new implementation
provides deterministic behavior for the Stack

functions and no aliasing:
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Functional Stack: Step 2

let s1 = makeStack([1, 2, 3]);
let s2 = push(s1, 0);
console.log(peek(s2)); // => 0
let s3 = pop(s2);
console.log(peek(s3)); // => 1
pop(s1);
console.log(s1); // => [ 1, 2, 3 ]
console.log(s2); // => [ 0, 1, 2, 3 ]
console.log(s3); // => [ 1, 2, 3 ]
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Functional Stack: Step 2

This implementation is safe - it does not
introduce unexpected side-effects to the data
structures, and the data structures remain

immutable.

The cost of this implementation, though, is that
each mutation requires a full copy of the data
structure. This is inefficient in RAM (we obtain
many copies of the same objects) and in CPU

(the copying operations are expensive).
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Disjoint Types and Disjoint Union

We have highlighted the perspective of Data
Types as denoting sets of values over which

common operations can be performed. On the
basis of this understanding, we defined

operations over types which correspond to set
operations - such as union and intersection.
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Disjoint Types and Disjoint Union

Such operations are provided for example in
TypeScript, and we can define types such as:

type NorS = number | string;
type SorB = string | boolean;
type S = NorS & SorB;

66/91



Disjoint Types and Disjoint Union

Type union can be used for example if we want
to model the set of values that can be denoted
by the JSON notation - as a recursive union of

possible values:
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Disjoint Types and Disjoint Union

type Json =
// Atomic values
| string
| number
| boolean
| null
// Compound values - maps and arrays
| Json[]
// A map where the keys are all strings
| { [property: string]: Json };
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Disjoint Types and Disjoint Union

We have also defined that the type system
implemented in TypeScript follows structural
subtyping as opposed to nominal subtyping.
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Disjoint Types and Disjoint Union

For example, if we define two types:
interface Person {

name: string;
address: string;

}

interface Variable {
name: string;
address: string;

}

let p: Person = { name: "Ben", address: "BS" };
let v: Variable = p; // OK!
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Disjoint Types and Disjoint Union

Under nominal typing (like it exists in Java for
example), these two types would be disjoint -
values of type Person and values of type

Variable would be different.
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Disjoint Types and Disjoint Union

Under structural typing (like it exists in
TypeScript), these two types are actually equal -

they describe the same set of values.
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Disjoint Types and Disjoint Union

When modeling data types, we are often
interested in distinguishing such types - so that

the values we describe are distinct, and we
cannot confuse a Person value with a

Variable value.
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Disjoint Types and Disjoint Union

The way to obtain this behavior is to add a
discriminant field - called a tag - to distinguish
values that are intended of being of different

types.
interface Person {

tag: "person";
name: string;
address; string;

}

interface Variable {
tag: "variable";
name: string;
address: string;

}
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Disjoint Types and Disjoint Union

let p: Person = {
tag: "person",
name: "Ben",
address: "BS"

}

let v: Variable = p; // Does not compile!
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Disjoint Types and Disjoint Union

In this example, the type of the tag field is a
set of a single value - the string "person" or

the string "variable".
With the addition of the tag field with these
specifications, the two types Person and

Variable have become disjoint - that is, the
set of values these type annotations denote are

disjoint.
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Disjoint Union

The possibility to define disjoint types can be
combined into a very common pattern called

disjoint union.
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Disjoint Union

In set theory, the disjoint union of two sets A
and B is is a binary operator that combines all
distinct elements of a pair of given sets, while
retaining the original set membership as a

distinguishing characteristic of the union set.

A ⊎ B = (A× {0}) ∪ (B× {1})
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Disjoint Union

For example:

{0, 1, 2}⊎{2, 3} = {(0, 0), (1, 0), (2, 0), (2, 1), (3, 1)}
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Disjoint Union

We identify in that operation that the elements
(0, 1) added to each pair play a role similar to
the tag field we added to map types to make

them disjoint.

In type descriptions, in order to define a
disjoint union type, we define the union of two
(or more) map types which are made disjoint by

using the same tag field.

80/91



Disjoint Union

For example:
interface Point2D { x: number; y: number }
type Shape = Circle | Rectangle | Triangle;
interface Circle {
tag: "circle";
center: Point2D;
radius: number;

}

interface Rectangle {
tag: "rectangle";
upperLeft: Point2D;
lowerRight: Point2D;

}
interface Triangle {
tag: "triangle";
p1: Point2D;
p2: Point2D;
p3: Point2D;

}
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Disjoint Union

These type definitions allow this type of
processing - which is “case by case” processing

of all the options in the disjoint union:
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Disjoint Union

const area: (s: Shape) => number = s => {
switch (s.tag) {
case "circle": return ...
case "rectangle": return ...
case "triangle": return ...
// No need for "default" case
// because our cases are exhaustive

}
}
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Disjoint Union

The tool of disjoint union together with the
corresponding switch construct achieves an

effect similar to sub-classes with virtual classes
in Object-Oriented Programming. It allows the
function to dispatch to different computations
based on the type of the actual value received

as a parameter.
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Disjoint Union

We prefer in the course the following functional
notation instead of switch, using the simple

conditional expression:
const area = (s: Shape): number =>

s.tag === "circle" ? ... :
s.tag === "rectangle" ? ... :
s.tag === "triangle" ? ... :
s // s is understood as a variable of type "never" here -
// it can be returned without affecting the return
// type of the function which remains `number`
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Disjoint Union

The conditional expression when it is chained
as in this example has the same semantic as a
switch case where all the cases are exclusive.

The difference is that in the last step, the
syntax of the expression requires an else case

which is a-priori not needed.
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Disjoint Union

The type inference mechanism of TypeScript
recognizes that after each test, the type of the
variable s has less and less possible options.
In the last else option, however, s is known to

have no possible values. In this case, it is
understood to have a type called never (which
denotes the empty set, the opposite of the type

any which denotes all possible values).
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Disjoint Union

In this case, we can just return s, which does
not contradict the return type of the function,
because we know that the function will return
either one of the cases in the first 3 clauses
(which is number) or never – altogether, the
function returns number union never which is

number.
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Disjoint Union

Both the usage of switch and the conditional
expression are safe against future changes in

the code: if the programmer extends the
definition of the type Shape with another

option, then the code for the function area will
not compile anymore.
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Disjoint Union

The definition of the union type in this specific
context makes sense because it expresses the

intention of the programmer:

• these are disjoint types - they have no
commonality in structure

• but they have a similar functional interface
- we consume them in a similar manner.
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Disjoint Union

Note that the type checker can determine that
the switch construct covers all possible

options - based on the structure of the type
union - and for each case, it can check the

expected keys based on the value of the tag
key.
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