
Principles of Programming Languages
Environment Model of Operational Semantics

1/140

Substitution Model

In the substitution model we presented last
time, procedure application involves the

following operations:

1. Argument evaluation
2. Renaming
3. Substitution
4. Reduction

2/140

The Problem with the Substitution Model

The substitution operation applies the pairing
of procedure parameters with the

corresponding arguments. Renaming is an
annoying by-product of substitution - and it

cannot be “compiled away” easily in this model
- we need to rename the body of the closure

each time it is applied (convince yourself of this
by finding an example that requires repeated

renaming).

3/140

The Problem with the Substitution Model

The main problem of this approach is that
substitution requires repeated analysis of
procedure bodies. In every application, the

entire procedure body is repeatedly renamed,
substituted and reduced.

4/140

The Problem with the Substitution Model

These operations on ASTs actually copy the
structure of the whole AST - leading to
extensive memory allocation / garbage

collection when dealing with large programs. In
fact, the substitution interpreter we reviewed is

so slow that it is barely usable.

5/140

The Environment Model

We introduce a new operational semantics
model which aims at optimizing the

substitution model into an efficient procedure
execution algorithm:

6/140

The Environment Model

The environment based operational semantics
model replaces substitution and renaming by a
data structure – the environment – which is

associated with every procedure application, is
created when a closure is created and accessed

when a closure is applied.

7/140

The Environment Model

We call the procedure that maps expressions to
values according to this model env-eval.

8/140

The Environment Model

This model is introduced to be an optimization
of the applicative-eval model, but it does
not change the operational semantics of the
language: env-eval returns the same values
on the same programs as applicative-eval
and enters into loops on the same programs,
and throws exceptions on the same programs.

It does all of this much faster than
applicative-eval.

9/140

The Environment Model

The distinction between substitution and
environment models is orthogonal to the

distinction between applicative and normal
evaluation strategies. We can combine these 2

options independently of each other and
obtain 4 distinct evaluation algorithms, which
implement two distinct operational semantics

(applicative vs. normal).

10/140

The Environment Model

As we have introduced when presenting the L1
substitution model, an environment is a finite
mapping from variables (the parameters) to

values (the argument values). In the
substitution model, we used only a single

environment - the global environment. In the
environment-based model, we will manipulate

multiple related environments.

11/140

The Environment Model

Consider what the steps performed as part of
the apply-procedure step of the

substitution applicative-order model when we
apply a closure to a list of arguments:

• We computed the values of the arguments
• We renamed bound variables in the body
• We replaced all free occurrences of type
VarRef of the parameters of the body with
the computed values.

12/140

The Environment Model

The objective of this manipulation was to
pre-process VarRef expressions in the body of
the procedure - so that, when we reduce the
body (evaluate the body after the substitution
step), we do not reach variables such as x, but
instead find the value to which x was bound at

the time of the closure application.

13/140

The Environment Model

The environment-based model turns this
process around by making the VarRef
substitution a lazy operation: instead of

replacing VarRefs before reduction, we start
reduction with a substitution object on the

side, and if and when we reach a VarRef, then
we resolve it with the substitution - instead of

using the global environment.

14/140

The Environment Model

It turns out that we can use exactly the same
environment data structure to keep track of the

required lazy substitution as we used to
maintain the global environment when dealing

with L1.

15/140

Elements of the Environment Model

The elements of the environment model
include:

16/140

Data Structures

• The environment data structure is organized
as a linked list of frames - each frame maps
variables to values. The links in the list of
frames correspond to nested invocations of
closures.

• The closure data structure is modified to
carry an environment. The environment
associated to the closure remembers the
set of variables that were accessible when
the closure was created.

17/140

Evaluation Rules

• Expressions are evaluated with respect to
an environment. The environment plays the
role of a context for the evaluation - so that,
the same expression evaluated in different
contexts will yield different values.
For example, (* x x) evaluated in the
context of an environment {x=2} results in
4, in an environment {x=3}, 9.

18/140

Evaluation Rules

• The evaluation rule for procedure
application is modified, so to replace
substitution (and renaming) by environment
creation.

19/140

The Environment Data Structure

Environment Terminology

1. An environment is a finite sequence of
frames: <f1; f2; ... ; fn>.

2. A frame represents a substitution of
variables by values. A variable-value pair in
a frame is called a binding.

3. Environments can overlap. An environment
<f1; f2; ... ; fn> includes n
embedded environments:
<f1; f2; ... ; fn>;
<f2; ... ; fn>; ... ; <fn>;.

20/140

Environment Terminology

4. The empty sequence of frames is called the
empty environment.

5. The environment <fi+1; ... ; fn> is
the enclosing environment of the frame fi
in <f1; f2; ... ; fn>, and fi extends
the environment
<fi+1; fi+2; ... ; fn>.

21/140

Environment Terminology

6. Another form of environment overlapping is
tail sharing, i.e., environments that share
ancestors environment, as in
<k; f1; f2; ... ; fn> and
<l; f1; f2; ... ; fn>.

22/140

Variable Value Definitions (apply-env Operation)

1. The value of a variable x in a frame f is
given by f(x) (an operation we call
apply-frame(f, x)).

2. The value of a variable x in an environment
E is the value of x in the first frame of E in
which it is defined. If x is not defined in any
frame of E, it is unbound in E.

23/140

Variable Value Definitions (apply-env Operation)

3. Calculating the value of a variable x in an
environment E is the operation
apply-env(E, x) - this is a recursive
operation across the linked list of frames in
the environment.

24/140

Variable Value Definitions (apply-env Operation)

The interface of the Frame and Environment
data types thus includes:

25/140

Value Constructors

• Frame: make-frame(vars,vals) - we
will denote frames as var=val,

• Environment: make-empty-env(),
extend-env(env, frame)

26/140

Accessors

• apply-frame(frame, var) - which we
will denote frame(var)

• apply-env(env, var) - which we will
denote env(var)

• env->frame(env) and
env->enclosing-env(env)

27/140

Direct Evaluation of let-expressions

Let us consider an evaluation rule for the direct
computation of a let-expression:

28/140

Direct Evaluation of let-expressions

<let-exp> ::= (let (<binding>*) <cexp>+)
// let-exp(bindings:List(Binding), body:List(Cexp))

<binding> ::= (<var> <cexp>)
// binding(var:Var-decl, val:Cexp)

29/140

Direct Evaluation of let-expressions

For example:

(let ((x 1) (y 2)) (+ x y))

30/140

Direct Evaluation of let-expressions

We saw in a previous lecture that let-exp can
be considered syntactic sugar (or syntactic

abbreviation) for procedure application - and
hence a syntactic rewrite operation leads us to
a form that we know how to evaluate using
closure creation and closure application.

31/140

Direct Evaluation of let-expressions

We now introduce a direct evaluation rule for
let-expressions to illustrate the use of

environments. The two evaluation rules are
semantically equivalent - that is, they will
always produce exactly the same results.

32/140

Direct Evaluation of let-expressions

How do we evaluate the let-expression using
environments instead of substitution?

33/140

Direct Evaluation of let-expressions

What we want to achieve, is to evaluate the
body of the let-expression in a context such
that when we ask to compute the VarRefs x
and y, we obtain the corresponding values (1

and 2).

34/140

Direct Evaluation of let-expressions

In order to achieve this goal, we construct a
new environment with a frame in which x and y
are bound to 1 and 2, and then evaluate the

body in this environment:
compute((+ x y), env({x=1, y=2})).

35/140

Direct Evaluation of let-expressions

But this is not sufficient.
Consider the following program:

(let ((a 1))
(let ((b (+ a a)))

(+ a b)))

36/140

Direct Evaluation of let-expressions

There are 2 let-expressions embedded in each
other. By the rule we just presented, we will

evaluate the inner-let expression in an
environment in which a is bound to 1 - let us

denote it env({a=1}).

37/140

Direct Evaluation of let-expressions

We first compute the new environment for the
inner-let - by computing the expression

(+ a a) in env({a=1}) - yielding 2. We then
evaluate the inner-let body (+ a b) in a new

environment env({b=2}).

38/140

Direct Evaluation of let-expressions

We realize that it is not sufficient to evaluate
the body in an environment that binds the let
variables - we also need to inherit the bindings
from the current environment. So that the
inner-let needs to be evaluated in an

environment:

eval-env((+ a b), <{b=2};{a=1}>)

39/140

Direct Evaluation of let-expressions

We generalize from this observation the
evaluation rule for let-expressions which
crucially relies on nested environments:

40/140

Let Evaluation Rule

If exp = let-exp(bindings, body):
env-eval(exp, env) is computed by:

let vars = variables in bindings
vals = value expressions in bindings
cvals = map(val => eval(val, env), vals)

return eval-sequence(body,
extend-env(env,

make-frame(vars, cvals)))

41/140

Let Evaluation Rule

There are two key points to note in this
evaluation rule:

42/140

Let Evaluation Rule

• The values of each var in the let
declaration are evaluated in the current
environment. Thus, they are outside the
scope of the new variable declarations - and
the variables defined in the let cannot be
used in the right-hand side of the bindings.

43/140

Let Evaluation Rule

• The body of the let expression is evaluated
in a new environment that has a new frame
which represents the new variable
declarations bound to their computed
values.

44/140

From Let to Closure

Let us recall that a let-expression is
semantically equivalent to the construction of a

procedure and its application:

(let ((a 1) (b 2)) <body>)

∼

((lambda (a b) <body>) 1 2)

45/140

From Let to Closure

By the same reasoning as for let-expressions,
let us try to derive the evaluation rule in
env-eval of a procedure application as

follows:

46/140

Application Evaluation Rule (Attempt 1)

If exp = app-exp(rator, rands):
env-eval(exp, env) is computed by:

let proc = env-eval(rator, env)
args = map(rand => eval(rand, env), rands)

if proc is a closure:
let params = closure.params(proc)

body = closure.body(proc)
return eval-sequence(body,

extend-env(env,
make-frame(params,

args)))
else
return apply-primitive(proc, args)

47/140

Application Evaluation Rule (Attempt 1)

If we try to apply this rule to the following
program - all seems to be ok:

env-eval[((lambda (a b) (+ a b)) 1 2), <>]
==> env-eval[(+ a b) , <{a=1, b=2}>]
==> 3

48/140

Application Evaluation Rule (Attempt 1)

But consider now what happens if we evaluate
the following program:

(let ((x 1)) ;; E1
(let ((p (lambda (y) (+ x y)))) ;; E2
(let ((x 2)) ;; E3

(p x))))

49/140

Application Evaluation Rule (Attempt 1)

(let ((x 1)) ;; E1
(let ((p (lambda (y) (+ x y)))) ;; E2
(let ((x 2)) ;; E3

(p x))))

The computation of p returns a closure
<closure (y) (+ x y)>. We then enter the

body of the third inner-let and compute
(p x) in the following environment:

50/140

Application Evaluation Rule (Attempt 1)

E1 = extend-env(empty-env, {x=1})
= <{x=1}>

E2 = extend-env(E1, {p = <closure (y) (+ x y)>})
= <{p=<closure..>};{x=1}>

E3 = extend-env(E2, {x=2})
= <{x=2};{p=<closure...>};{x=1}>

51/140

Application Evaluation Rule (Attempt 1)

In this environment, we compute (p x) -
which means we apply the application rule we

tried to define above and obtain:
let proc = <closure (y) (+ x y)>

args = (2)
let params = (y)

body = ((+ x y))
return env-eval-sequence(body,

extend-env(E3, {y=2})

52/140

Application Evaluation Rule (Attempt 1)

Eventually, we evaluate (+ x y) in an
environment

E4 = < {y = 2}; {x = 2};
{p = ...}; {x = 1}>

53/140

Application Evaluation Rule (Attempt 1)

The key observation, is that the inner frame
binding x to 2 hides the outer frame binding x

to 1. The result of this reduction is thus 4.

This is wrong: this program yields 3 in Scheme
and in the applicative-eval substitution model.

54/140

Fixing the Application Evaluation Rule: Enforcing Lexical Scop-
ing

The root of the problem is that the closure that
we computed in step 2 must remember the

bindings of the variables that occur free in its
body - not only the bindings of its parameters.

55/140

Fixing the Application Evaluation Rule: Enforcing Lexical Scop-
ing

If we look at the procedure p -
(lambda (y) (+ x y)) - it has one explicit

parameter, y, but it also has an implicit
dependency on the free variable x.

56/140

Fixing the Application Evaluation Rule: Enforcing Lexical Scop-
ing

Scheme (and most sane programming
languages) resolve these implicit dependencies
by using the rules of lexical scoping which we
reviewed when we defined lexical addressing.

57/140

Fixing the Application Evaluation Rule: Enforcing Lexical Scop-
ing

The rule we wrote above does not respect these
rules - because it leaves the free variables in
the body of the closure free until the moment
of the closure application. This leads to the
wrong effect of variable capture that we have
observed above - where x was captured by the

inner let in E3.

58/140

Fixing the Application Evaluation Rule: Enforcing Lexical Scop-
ing

To fix this problem, we must add memory to the
closure data structure: in addition to the list of

parameters (which will be bound when the
closure is applied to its arguments), we must

also remember the binding of the free
variables in the context in which the closure
was created. In the example above, the closure
must remember the binding of x in the context

of E1.
59/140

Fixing the Application Evaluation Rule: Enforcing Lexical Scop-
ing

NOTE: This behavior is what justifies the name
of the closure - it closes bindings inside its

memory.

60/140

Fixing the Application Evaluation Rule: Enforcing Lexical Scop-
ing

When we evaluate a closure application, we
must then use the environment which the
closure remembers - instead of the current

environment.

61/140

Fixing the Application Evaluation Rule: Enforcing Lexical Scop-
ing

To fix the evaluation rule, we must therefore:

• Update the definition of the closure data
structure to include: params, body and
environment at closure creation time.

• Change the closure application rule to use
the closure environment as a basis for the
extend-env instead of the current
environment.

62/140

Fixing the Application Evaluation Rule: Enforcing Lexical Scop-
ing

Why didn’t we see this problem when we
specified the evaluation rule for

let-expressions?

63/140

Correct Evaluation Rule for Applications

The closure data-structure is updated to
include a new env field:

<closure> ::= closure(params:List(Var-decl),
body:List(CExp),
env:Env)

64/140

Correct Evaluation Rule for Applications

The closure.env field is initialized when the
closure is created - that is, when a proc-exp

expression is evaluated:
If exp = proc-exp(params, body):
env-eval(exp, env) is computed by:
return make-closure(params, body, env)

65/140

Correct Evaluation Rule for Applications

The closure.env field remembers the
environment with the bindings for all the
variables that may occur free in its body

beyond its parameters. This field is eventually
used when the closure is applied:

66/140

Correct Evaluation Rule for Applications

If exp=app-exp(rator, rands):
env-eval(exp, env) is computed by:

let proc = env-eval(rator, env)
args = eval(rand, env) for rand in rands
if proc is a closure:
let params = closure.params(proc)

body = closure.body(proc)
closure-env = closure.env(proc)

;; Extend the **closure-env** and
;; **not** the current env
return eval-sequence(body,

extend-env(closure-env,
make-frame(params, args)))

else
return apply-primitive(proc, args)

67/140

Correct Evaluation Rule for Applications

When we apply this new and corrected
evaluation rule to the case above, we now

obtain the expected result:

68/140

Correct Evaluation Rule for Applications

env-eval [(let ((x 1)) ;; E1
(let ((p (lambda (y) (+ x y)))) ;; E2

(let ((x 2)) ;; E3
(p x)))),

empty-env()] =>

env-eval [(let ((p (lambda (y) (+ x y)))) ;; E2
(let ((x 2)) ;; E3

(p x))),
ext-env({}, {x=1})] =>

69/140

Correct Evaluation Rule for Applications

env-eval [(let ((x 2)) ;; E3
(p x)),

ext-env({};
{x=1};
{p = <closure (y) (+ x y) {};{x=1}>] =>

^ #1: Store env

env-eval[(p x),
ext-env({};

{x=1};
{p=<closure(y) (+ x y) {};{x=1}>;
{x=2}] =>

env-eval[(+ x y), ;; #2: Use stored env
ext-env({}; {x=1}; {y=2})] => 3

70/140

Correct Evaluation Rule for Applications

As expected, env-eval returns the same value
as the substitution model (and as Scheme).

71/140

env-eval Interpreter

The interpreter is identical to that of the
substitution model for L3 we reviewed

previously except for the following places:

72/140

env-eval Interpreter

• Support for direct evaluation of let-exp
expressions with extend-env.

• An expanded version of the closure data
structure with the env field.

• The evaluation rule for proc-exp which
stores the current environment in the
created closure.

• The procedure applyProcedure.

73/140

Visual Notation for the Environment Model

To properly understand the process of
expression evaluation using the environment
model, we develop a visual notation to trace
the development of environments and their
relation. As a program evaluation proceeds,
multiple environments are created, with

various relations between them:

74/140

Visual Notation for the Environment Model

• When a closure is created, the closure refers
to the environment in which it was created.

75/140

Visual Notation for the Environment Model

• When a closure is applied, a new
environment is created which extends the
closure environment. The new closure also
refers to the current environment (in which
the application is evaluated) - this reference
is called the return control relation.

76/140

Visual Notation for the Environment Model

• When a let-expression is evaluated, a new
environment is created which extends the
current environment.

77/140

Visual Notation for the Environment Model

A frame is represented as a box containing
bindings - denoted var:val.

An environment is represented as a frame
which links to its enclosing environment as a

chain of frame boxes.

78/140

Visual Notation for the Environment Model

79/140

Visual Notation for the Environment Model

The environment diagrams display all the
environments constructed over the process of
an expression evaluation using env-eval.

80/140

Visual Notation for the Environment Model

Each environment is identified by a unique
name and a serial number in the order of

environment construction. By convention, we
use the names E1, E2, ..., where the

environment named Ei is the i-th in the
construction order. The global environment is

named GE.

81/140

Visual Notation for the Environment Model

Each environment is associated with a lexical
block in the evaluated code, and its code.

82/140

Visual Notation for the Environment Model

Each environment has a return control link and
a return value. The return control link points to
the environment where computation continues,

once the evaluation of the code of the
environment is over. The return value is the
value of the evaluation of the code of the

environment.

83/140

Scoping and Control

• The tree structured lexical scopes of the
program are reflected in the tree structure
of frames in an environment diagram.

• The sequential computation is reflected in
the linear order of frames.

Therefore, the environment links (from
environment to enclosing environment) –

create a tree structure, while the return control
links create a linear order.

84/140

Visual Representation of Closures

The visual notation for a closure includes is a
double circle - the left circle is annotated with
the params and body of the closure; the right

circle is an arrow which points to the
environment in which the closure was created.

85/140

Visual Representation of Closures

86/140

Visual Representation of Closures

When the diagram refers to source code, we
identify the lexical blocks in the source code

with identifiers such as B1, B2.

87/140

Visual Representation of Closures

Consider the source code:
(define sq (lambda (x) (* x x)))
(define sum-of-square (lambda (x y) (+ (sq x) (sq y))))
(define f (lambda (a) (sum-of-squares (+ a 1) (* a 2))))

88/140

Visual Representation of Closures

The corresponding environment diagram
showing the 3 created closures (sq,

sum-of-squares and f) is:

89/140

Visual Representation of Closures

90/140

Visual Representation of Closures

When we evaluate the program (f 5) - the
resulting environment diagram is:

91/140

Visual Representation of Closures

92/140

Visual Representation of Closures

93/140

Visual Representation of Closures

94/140

Visual Representation of Closures

95/140

Visual Representation of Closures

96/140

Visual Representation of Closures

97/140

Visual Representation of Closures

98/140

Visual Representation of Closures

99/140

Visual Representation of Closures

100/140

Historical Note: Dynamic Scoping

The distinction we made above between using
the current environment or the closure

environment when applying a procedure was
clarified only in the late 1970s (between 1975

and 1980).

101/140

Historical Note: Dynamic Scoping

The confusion was caused by the fact that in
most programming languages there was no first
class functions, and only the restricted form of
let-expressions known as local variables. As

we have noted above, in the case of
let-expression, the closure-env and the
current-env happen to be the same.

102/140

Historical Note: Dynamic Scoping

The first interpreters of the LISP-family
languages used a scoping policy called

dynamic scoping which consists of using the
current environment instead of the closure

environment when applying a closure. This is in
contrast to the lexical scoping discipline we

just described.

103/140

Historical Note: Dynamic Scoping

In general, using dynamic scoping is not a good
idea - as it makes it creates unexpected

dependencies between unrelated variables and
functions which only appear at runtime.

104/140

Using Closures

The environment model refined our
understanding of closures.

Closures capture a reference to bindings in the
environment in which they are created.

We will now explore programming techniques
which exploit this property of closures.

105/140

Frames Lifecycle in the Presence of Closures

Consider the case in which we construct a
closure in the scope of a variable, and then exit

this scope.

(let ((a 1)) ;; E1
(lambda (x) (+ x a)))

106/140

Frames Lifecycle in the Presence of Closures

When we exit the scope of the let-expression,
the environment E1 is usually discarded. This is
what happens in the usual stack-management
of frames as was discussed in SPL: when the
process enters a block which defines local
variables, we allocate a frame on the stack.

107/140

Frames Lifecycle in the Presence of Closures

When the process exits the block, the frame is
discarded (popped from the stack).

108/140

Frames Lifecycle in the Presence of Closures

When a closure is created within this scope
though, the frame may need to be kept

accessible for a longer period. Consider this
configuration:

(let ((f (let ((a 1)) ;; E1: <{a=1}>
(lambda (x) (+ x a)))))

(f 10)) ;; E2: <{f=<closure (x) (+x a) E1>}>

109/140

Frames Lifecycle in the Presence of Closures

(let ((f (let ((a 1)) ;; E1: <{a=1}>
(lambda (x) (+ x a)))))

(f 10)) ;; E2: <{f=<closure (x) (+x a) E1>}>

The body of the closure f is evaluated in the
environment <{x=10};{a=1}> - even though
the environment E1 has already been exited

and is not accessible anymore.

110/140

Frames Lifecycle in the Presence of Closures

If we were to compute:
(let ((f (let ((a 1)) ;; E1: <{a=1}>

(lambda (x) (+ x a)))))
a) ;; E2: <{f=<closure (x) (+x a) E1>}>

we would obtain a variable undefined error -
because a is not accessible anymore in the

environment E2.

111/140

Frames Lifecycle in the Presence of Closures

Following this analysis, we conclude that the
life-cycle of frames in the presence of closures
must take into account the references that

closures keep to frames.

112/140

Closure Factories

The following program pattern exploits the
environment memory in closures to create
objects with their private environment.

113/140

Closure Factories

In general - we will understand the evaluation
of a lambda-expression (a procedure) as the

construction of a closure.

114/140

Closure Factories

We can thus write “closure maker” functions
which, given parameters, construct a closure

which remembers these parameters.
For example:

115/140

Closure Factories

(define make-adder
(lambda (a) ;; Parameters to the closure maker
(lambda (x) ;; Construction of the closure
(+ a x)))) ;; Body of the closure - refers

;; to the private environment of
;; the closure

(define a3 (make-adder 3)) ;; This adder has a
;; private state a=3

(define a5 (make-adder 5)) ;; a5 has a private state a=5

(a3 2) ;; => 5
(a5 2) ;; => 7
((make-adder 1) 2) ;; => 3

116/140

Closure Factories

We constructed various instances of the
general adder function - each with its own

private state. The returned object is a closure,
which is a procedure and that we use as a

regular function.

117/140

Using Closures to Implement Compound Data Structures

We can then exploit this pattern to represent
compound data structures in a purely
functional manner - without requiring
primitives to construct compound data
structures such as pairs or lists or maps.

118/140

Using Closures to Implement Compound Data Structures

Here is a closure-based implementation of the
pair data structure:

119/140

Using Closures to Implement Compound Data Structures

;; Purpose: closure-based pair value constructor
;; Signature: make-pair(a,b)
;; Type: [T1 * T2 -> Closure-Pair(T1,T2)]
(define make-pair
(lambda (a b) ;; Parameters of the pair constructor
(lambda (msg) ;; Interface of the pair object
(cond ((eq? msg 'car) a) ;; Dispatch method for

((eq? msg 'cdr) b))))) ;; the pair object

(let ((p1 (make-pair 1 2))
(p2 (make-pair 3 4)))

(+ (p1 'car) (p2 'cdr))) ;; => 5

120/140

Using Closures to Implement Compound Data Structures

We consider a pair as the aggregation of two
values a and b of types T1 and T2. We

construct a closures which remembers the two
provided values in a private environment with

bindings for variables a and b.

121/140

Using Closures to Implement Compound Data Structures

We must next think of a way to provide access
to these values according to the functional

interface of the Pair data type. We achieve this
by writing the body of the closure as a

message-dispatch pattern: the closure receives
as an argument the name of the operation we
want to achieve on the pair data structure, and

the message dispatch logic computes the
operation in the context in which a and b are

accessible.
122/140

Using Closures to Implement Compound Data Structures

In the case of the Pair datatype, the functional
interface we want to expose is car to access

the a member and cdr to access the b
member. We thus implement a message

dispatch which knows to receive the messages
car and cdr and routes them to the right
branch in the cond which executes the right

code (retrieve the value of a or b).

123/140

Using Closures to Implement Compound Data Structures

Assume now we want to extend the functional
interface of this compound data type with a
method add to compute a + b. The direct
approach consists of extending the dispatch

method:

124/140

Using Closures to Implement Compound Data Structures

;; Purpose: closure-based pair value constructor
;; with add support
;; Signature: make-adder-pair(a,b)
;; Type: [Number * Number -> Adder-Pair]
(define make-adder-pair
(lambda (a b) ;; Parameters of the pair constructor
(lambda (msg) ;; Interface of the pair object
(cond ((eq? msg 'car) a) ;; Dispatch method for the

((eq? msg 'cdr) b) ;; adder-pair object
((eq? msg 'add) (+ a b))))))

(let ((p1 (make-adder-pair 1 2))
(p2 (make-adder-pair 3 4)))

(+ (p1 'add) (p2 'add))) ;; => 10

125/140

Using Closures to Implement Compound Data Structures

How would we handle the case of a method in
the data structures which requires a

parameter?

There are different ways to support this case -
we present here one technique which exploits

closures again:

126/140

Using Closures to Implement Compound Data Structures

For example, let us extend the adder-pair
interface with a method scale which takes a

parameter k and returns a new pair
[k*a, k*b].

127/140

Using Closures to Implement Compound Data Structures

;; Purpose: closure-based pair value constructor with scale
;; Signature: make-scale-pair(a,b)
;; Type: [Number * Number -> Scale-Pair]
(define make-scale-pair
(lambda (a b) ;; Parameters of the pair constructor
(lambda (msg) ;; Interface of the pair object
(cond ((eq? msg 'car) a) ;; Dispatch method for the

((eq? msg 'cdr) b) ;; adder-pair object
((eq? msg 'scale) ;; Method with a parameter k
(lambda (k) (make-scale-pair (* k a) (* k b))))))))

(let ((p1 (make-scale-pair 1 2)))
(let ((kp1 ((p1 'scale) 3))) ;; Observe how the parameter

;; k is passed to the method
;; scale

(kp1 'cdr))) ;; => 6

128/140

Using Closures to Implement Compound Data Structures

To receive a parameter to the method, we
actually construct a method closure from

within the pair dispatcher. Because this closure
is constructed in a closure which is activated in

the environment in which a and b are
accessible, the returned closure also has

access to the private a and b state binding of
the object. The client code can then use this
returned closure and pass it the required

parameter k.
129/140

Functional Selectors for Closure-based Compound Data Struc-
tures

Instead of adding a new branch in the
message-dispatch cond of the closure body, we
can generalize the access pattern to the fields
of a closure-based compound data structure by

accepting a functional parameter.

130/140

Functional Selectors for Closure-based Compound Data Struc-
tures

Consider this alternative implementation of the
closure-based pair data structure:

131/140

Functional Selectors for Closure-based Compound Data Struc-
tures

;; Purpose: value constructor for pair-sel data structure
;; Signature: make-pair-sel(a,b)
;; Type: [T1 * T2 -> Pair-Sel(T1,T2)]
(define make-pair-sel
(lambda (a b) ;; parameters to the constructor
(lambda (sel) ;; closure constructor
(sel a b)))) ;; body of the closure -

;; general selector application

132/140

Functional Selectors for Closure-based Compound Data Struc-
tures

;; Purpose: access the first element in a pair-sel
;; Signature: pair-first(pair-sel)
;; Type: [Pair-sel(T1, T2) -> T1]
(define pair-first
(lambda (pair)

(pair (lambda (a b) a)))) ;; Pass the a selector

133/140

Functional Selectors for Closure-based Compound Data Struc-
tures

;; Purpose: access the second element in a pair-sel
;; Signature: pair-second(pair-sel)
;; Type: [Pair-sel(T1, T2) -> T2]
(define pair-second
(lambda (pair)

(pair (lambda (a b) b))))

134/140

Functional Selectors for Closure-based Compound Data Struc-
tures

(let ((p1 (make-pair-sel 1 2))
(p2 (make-pair-sel 3 4)))

(+ (pair-first p1) (pair-second p2))) ;; => 5

(let ((p3 (make-pair-sel 5 6)))
(p3 (lambda (a b) (+ a b)))) ;; => 11

135/140

Functional Selectors for Closure-based Compound Data Struc-
tures

;; Scale pair - as above, the selector constructs
;; a closure method which accepts the k parameter.
(let ((p4 (make-pair-sel 7 8)))
(let ((p5-scale (p4 (lambda (a b)

(lambda (k)
(make-pair-sel (* k a) (* k b)))))))

(pair-first (p5-scale 2)))) ;; => 14

136/140

Functional Selectors for Closure-based Compound Data Struc-
tures

We observe that this functional accessor
method generalizes the variants we have

observed above. It allows the client to pass to
the data structure a method which will be
invoked in the context of the data structure.

This technique is a variant of the visitor design
pattern.

137/140

Comparison Closure-based Techniques with Object Oriented
Programming

The closure-based functional techniques we
have just reviewed as closely related to the
paradigm of Object-oriented programming.

138/140

Comparison Closure-based Techniques with Object Oriented
Programming

The key similarity is that a closure with its
private environment is similar to an object with

its private state.

The closure exposes a limited functional
interface (it can be applied), while an object

can expose an interface with multiple methods.

139/140

Comparison Closure-based Techniques with Object Oriented
Programming

We also did not discuss the aspects of
inheritance, composition and interface

extension in the closure-based techniques
above. These are all important aspect of OO

programming.

Finally, we did not discuss ways in which the
syntax of the programming language can make
using such techniques easy and approachable.

140/140

	The Environment Data Structure

