
Principles of Programming Languages
Higher Order Functions in Scheme and Local Variables

1/66



Previously

We introduced L1 which supported:

• Atomic expressions – numbers, booleans,
primitive procedures

• Special forms: define expressions
• Non-special forms: (<exp> ... <exp>)

2/66



Previously

We then introduced L2 which added:

• User-defined procedures (closures)
• Special forms: lambda, if, cond

3/66



Previously

Lastly, we introduced L3 which adds two new
values to our language: Pairs and Lists. We

added:

• Primitive procedures: cons, car, cdr,
pair?, list?, equal?

• The special literal for the empty list: '()
• Literal expressions: '(<lit> . <lit>)
and '(<lit> ... <lit>).

4/66



Previously

The possible computed values in L3 are
therefore:

• Numbers
• Booleans
• Primitive procedures
• Closures
• Pairs
• Lists

5/66



Higher Order Procedures in L3

Can we define higher-order functions in L3?

6/66



Higher Order Procedures in L3

For all the procedures we will define in Li from
this point on, we will attach a contract in the
form of formatted comments. The contract

includes at least:

;; Signature:
;; Type:
;; Purpose:

7/66



Higher Order Procedures in L3

Within these comments, we use a type
language to define the type of expressions

which is extremely close to the TypeScript type
language - but restricted to the data types that
we have defined in our language - Pair and List

instead of Arrays and Maps.

8/66



Higher Order Procedures in L3

For function types, we write
[T1 * T2 -> T3] for a function taking 2

parameters of type T1 and T2 and returning a
value of type T3. We denote type variables by
using type names that start with a capital T. In
the next Chapter, we will formalize this type
language and implement meta-programs
operating over it (type checker and type

inference systems).

9/66



map

Let us try to define our favorite higher-order
functions:

;; Signature: map(f, s)
;; Type: [[T1 -> T2] * List(T1) -> List(T2)]
;; Purpose: Apply f to all elements in s
;; and return the list of the results.
(define map
(lambda (f s)
(if (empty? s)

'()
(cons (f (car s))

(map f (cdr s))))))
10/66



map

The key part to verify according to the
evaluation rules - is that the invocation of

(f (car l)) will be evaluated as expected
according to the evaluation rules of L3.

11/66



filter

;; Signature: filter(pred, s)
;; Type: [[T -> Boolean] * List(T) -> List(T)]
;; Purpose: Return the list of elements
;; in s that satisfy pred.
(define filter
(lambda (pred s)
(if (empty? s)

'()
(if (pred (car s))

(cons (car s) (filter pred (cdr s)))
(filter pred (cdr s))))))

12/66



reduce

;; Signature: reduce(reducer, initial, s)
;; Type: [[T1 * T2 -> T2] * T2 * List(T1) -> T2]
;; Purpose: Combine all the values of s using reducer
;; Example: (reduce + 0 '(1 2 3)) => (+ 1 (+ 2 (+ 3 0)))
(define reduce

(lambda (reducer initial s)
(if (empty? s)

initial
(reducer (car s)

(reduce reducer initial (cdr s))))))

13/66



reduce

Compare this first definition of reduce with
this one:

14/66



reduce

;; Signature: reduce2(reducer, initial, s)
;; Type: [[T1 * T2 -> T2] * T2 * List(T1) -> T2]
;; Purpose: Combine all the values of s using reducer
;; Example: (reduce2 + 0 '(1 2 3)) => ?
(define reduce2

(lambda (reducer initial s)
(if (empty? s)

initial
(reduce2 reducer

(reducer (car s) initial)
(cdr s)))))

15/66



reduce

Are the two functions reduce and reduce2
equivalent?

16/66



reduce

No. For example:

(reduce - 0 '(1 2 3 4)) ;; ==> -2
(reduce2 - 0 '(1 2 3 4)) ;; ==> 2

17/66



reduce

reduce creates this tree:
-

1 -

2 -

3 -

4 0
18/66



reduce

While reduce2 creates this tree:
-

4 -

3 -

2 -

1 0
19/66



Procedures as Parameters

Let us observe the process of defining
functional abstractions through abstraction of

repeated patterns of code.

20/66



Procedures as Parameters

Consider a procedure that computes the sum of
the numbers in a range [a,b]:

;; Signature: sum-integers(a, b)
;; Type: [Number * Number -> Number]
;; Purpose: Compute the sum of
;; all integers a to b
(define sum-integers

(lambda (a b)
(if (> a b)

0
(+ a (sum-integers (+ a 1) b)))))

21/66



Procedures as Parameters

Let us then define a procedure to compute the
sum of the cubes of all the numbers in [a,b]:

(define cube (lambda (x) (* x x x)))

;; Signature: sum-cubes(a, b)
;; Type: [Number * Number -> Number]
;; Purpose: Compute the sum of the cube
;; of all integers a to b
(define sum-cubes

(lambda (a b)
(if (> a b)

0
(+ (cube a)

(sum-cubes (+ a 1) b)))))
22/66



Procedures as Parameters

Consider yet a third function - used to compute
a numerical approximation of π using the

formula:

1
a(a+ 2) +

1
(a+ 4)(a+ 6) +

1
(a+ 8)(a+ 10) + . . .

This formula converges to π
8 when starting with

a = 1.

23/66



Procedures as Parameters

;; Signature: pi-sum(a,b)
;; Type: [Number * Number -> Number]
;; Purpose: compute the approximation of pi/8
(define pi-sum

(lambda (a b)
(if (> a b)

0
(+ (/ 1 (* a (+ a 2)))

(pi-sum (+ a 4) b)))))

24/66



Procedures as Parameters

Let us now try to generalize the structure of
these 3 procedures - that is, define a functional
abstraction that describes the commonality

between these 3 functions.

25/66



Procedures as Parameters

We observe the following repeated pattern:

(define <name>
(lambda (a b)
(if (> a b)

0
(+ (<term> a)

(<name> (<next> a) b)))))

26/66



Procedures as Parameters

Based on this observation, we define a
functional abstraction:

;; Signature: sum(term, a, next, b)
;; Type: [[N -> N] * N * [N -> N] * N -> N]
;; Purpose: Compute the sum:
;; (term a) + (term (next a)) + ... + (term n)
;; where n = (next (next (... (next a)))) <= b
;; and (next n) > b.
(define sum

(lambda (term a next b)
(if (> a b)

0
(+ (term a)

(sum term (next a) next b)))))
27/66



Procedures as Parameters

We can now redefine the 3 procedures above
using the new sum abstraction:

(define sum-integers
(lambda (a b)
(sum identity a add1 b)))

(define sum-cubes
(lambda (a b)
(sum cube a add1 b)))

(define pi-sum
(lambda (a b)
(sum pi-term a pi-next b)))

(define pi-term
(lambda (x)
(/ 1 (* x (+ x 2)))))

(define pi-next
(lambda (n) (+ n 4)))

28/66



Procedures as Parameters

Given this new functional abstraction sum - we
can define other functions. For example, a
numerical approximation of the definite
integral of a numerical function using the

formula:

∫ b

a
f(x)dx =

 b−a
dx∑
n=1

f(a+ n · dx+ dx
2 )

dx
29/66



Procedures as Parameters

As we spot a sum in this formula, the sum
abstraction is relevant for the implementation:
(define dx 0.001)
(define add-dx (lambda (x) (+ x dx)))

;; Signature: integral(f, a, b)
;; Type: [[N -> N] * N * N -> N]
;; Purpose: Compute an approximation of the
;; definite integral of f in [a, b].
(define integral

(lambda (f a b)
(* (sum f (+ a (/ dx 2)) add-dx b) dx)))

30/66



Local Variables

Up to this point, we only defined global
variables using the define special form.

Local variables are a programming language
feature which encourages programmers to limit
the scope within which variables are known,
and to avoid hidden dependencies between
global variables and functions that refer to

them.

31/66



Local Variables

When defining a local variable, we must
provide:

• A way to name the variable
• How to initialize the variable
• A way to decide what is the scope of the
variable - that is, what is the part of the
program where this variable is visible.

32/66



Local Variables

Up to this point, we observed variables in only
two contexts:

• In define expressions:
(define <var> <exp>)

• In lambda expressions:
(lambda (<var> ...) <exp> ...)

33/66



Local Variables

We first define the notions of scope, and bound
and free variable occurrences before

introducing local variables in the language.

34/66



Parameters, Scope, Bound and Free Variable Occurrences

A lambda form includes parameters and a
body. Within a lambda expression, the body is
the scope of the parameters - this means that
all the variables that occur within the body are
intended to be bound to the parameters. This
is the case even if there is preceding definition

of a variable with the same name.

35/66



Parameters, Scope, Bound and Free Variable Occurrences

For example:

(define x 1)
(lambda (x) (* x x))

Occurrences of x in the body refer to the
parameter variable x and not to the global

variable x.

36/66



Parameters, Scope, Bound and Free Variable Occurrences

In such a case, we say that the occurrences of x
in the body of the lambda expression are

bound occurrences. Other variables are said to
occur free.

37/66



Parameters, Scope, Bound and Free Variable Occurrences

For example, in the expression:

(lambda (f a b dx)
(* (sum f

(+ a (/ dx 2.0))
(lambda (x) (+ x dx))
b)

dx))
the variables f, a, b, dx all occur bound - while

the variable sum occurs free.
38/66



Deriving the let Shortcut Notation

Consider the computation of the following
function:

f(x, y) = x(1+ xy)2 + y(1− y) + (1+ xy)(1− y)

39/66



Deriving the let Shortcut Notation

Let us implement a Scheme procedure to
compute this function:

(define f
(lambda (x y)

(+ (* x
(square (+ 1 (* x y))))

(* y
(- 1 y))

(* (+ 1 (* x y))
(- 1 y)))))

40/66



Deriving the let Shortcut Notation

We observe that the same sub-expressions are
repeated: (+ 1 (* x y)) and (- 1 y).

This not only makes it more difficult to read the
code - it also makes the computation slower -
because these expressions will actually be
computed twice each time the function is

invoked.

41/66



Deriving the let Shortcut Notation

One way to avoid these repetitions is to
abstract away the repeated sub-expressions -
in exactly the same way we abstracted away the
repeated sub-expressions when defining the

sum abstraction.

42/66



Deriving the let Shortcut Notation

Our abstraction mechanism involves defining
new functions:

(define a
(lambda (x y)

(+ 1 (* x y))))

(define b
(lambda (y)

(- 1 y)))

43/66



Deriving the let Shortcut Notation

Using these two helper functions, we can
rewrite f as:

(define f
(lambda (x y)

(+ (* x (square (a x y)))
(* y (b y))
(* (a x y) (b y)))))

44/66



Deriving the let Shortcut Notation

The problem is that we need to define names
for these helpers - and define new functions

for each one.

45/66



Deriving the let Shortcut Notation

Alternatively - we can proceed as follows:

Let a = 1+ xy, b = 1− y, and define f as

f(x, y) = xa2 + yb+ ab

46/66



Deriving the let Shortcut Notation

Which in Scheme is implemented as:
(define f
(lambda (x y)

((lambda (a b)
(+ (* x (square a))

(* y b)
(* a b)))

(+ 1 (* x y))
(- 1 y))))

47/66



Deriving the let Shortcut Notation

This structure is convenient - it allows us to
define local variables a and b which are

defined within the scope of x and y and are
only used within a single expression.

48/66



The let Abbreviation

The syntactic form of the definition of local
variables is not readable - because the value
which initializes the local variables (a and b)

are far away from their declaration.

49/66



The let Abbreviation

The Scheme language defines a syntactic
abbreviation which is internally turned into the
same lambda application form called the let
form to encourage programmers to use this

construct.

50/66



The let Abbreviation

The structure of the let expression is:

(let ((<var1> <exp1>)
(<var2> <exp2>)
...
(<varn> <expn>))

<body1> ...)

51/66



The let Abbreviation

Internally, this form is replaced by the
equivalent syntactic form:

((lambda (<var1> ... <varn>)
<body1> ...)

<exp1> ... <expn>)

Hence its evaluation rule is already defined as
per the rules of L3 evaluation.

52/66



The let Abbreviation

So, for our example, the code would look like
this:

(define f
(lambda (x y)

(let ((a (+ 1 (* x y)))
(b (- 1 y)))

(+ (* x (square a))
(* y b)
(* a b)))))

53/66



The let Abbreviation

Still, it is useful to remember the way let forms
are evaluated:

• The let variables have scope over the body
of the let only.

• Each <vari> is bound to the value of each
<expi>.

• All the bindings are performed
simultaneously - they do not depend on
each other.

54/66



The let Abbreviation

• The initial values <expi> are computed
outside the scope of the let.

• The evaluation of the let form involves the
creation of closure value and its application
to the initial values.

55/66



Procedures as Returned Values

We have seen so far examples of higher order
procedures that receive procedures as

parameters. Let us now review cases where
procedures return computed procedures.

56/66



Returning a Closure

Let us first work out the mechanics of
procedures returning procedure values:

We first start from an expression that has a
concrete value (a number) and abstract it away

on each of the variables that occur in the
expression:

57/66



Returning a Closure

(define x 3)
(define y 0)

(+ x y y)
;; => 3
(lambda (y) (+ x y y))
;; => <Closure (y) (+ x y y)>
(lambda (y) (lambda (x) (+ x y y)))
;; => <Closure (y) (lambda (x) (+ x y y))>

58/66



Returning a Closure

Now, let us apply these closure values:
((lambda (x) (+ x y y)) 5)
;; => 5
((lambda (y) (lambda (x) (+ x y y))) 2)
;; => <Closure (x) (+ x 2 2)>
(((lambda (y) (lambda (x) (+ x y y))) 2) 5)
;; => 9

59/66



Returning a Closure

The important point to notice is that when a
Closure value is constructed, the value of the
free variables is substituted in the body of the
closure. For example, in the second expression
above, the closure value has no free variable y

- but the occurrences of y have been
substituted by 2.

60/66



Derivative Example

We design a function which given a numeric
function as a parameter, returns a new function
which computes a numerical approximation of

the derivative of the function - using the
formula:

f′(x) = f(x+ dx)− f(x)
dx

61/66



Derivative Example

;; Signature: derive(f, dx)
;; Type: [[N -> N] * N -> [N -> N]]
;; Purpose: Construct a function that computes
;; a numerical approx. of the
;; derivative of f with resolution dx.
(define derive
(lambda (f dx)
(lambda (x)

(/ (- (f (+ x dx))
(f x))

dx))))

62/66



Derivative Example

When this function is evaluated, it returns a
Closure value which remembers the values of f

and dx that were used.

(let ((f1 (deriv square 0.001)))
(f1 2)) ;; => 4.000999999999699

63/66



Derivative Example

We can iterate this procedure to compute the
nth derivative of a numerical function:

;; Signature: nth-deriv(f, n)
;; Type: [[N -> N] * N -> [N -> N]]
;; Purpose: construct a function that computes
;; a numerical approx.
;; of the nth derivative of f
(define nth-deriv

(lambda (f n)
(lambda (x)

(if (= n 0)
(f x)
((nth-deriv (derive f 0.0001) (- n 1)) x)))))

64/66



Derivative Example

Consider an alternative definition:
(define nth-deriv-early

(lambda (f n)
(if (= n 0)

f
(derive (nth-deriv-early f (- n 1)) 0.0001))))

65/66



Derivative Example

The time at which the closures are created is
different. Trace the behavior and comment on

which version is more desirable.

66/66


