
Principles of Programming Languages
Asynchronous Programming

1/137



Types of Control Flows

In this chapter, we will investigate the general
topic of how to manage control flow in

programming languages. Control flow is the
order in which operations are executed within a
program. In procedural languages, the simplest
form of control flow is the sequence (execute

statements one after the other).

2/137



Types of Control Flows

Conditional statements (if, switch)
determine which of multiple continuations are
followed depending on the value of a tested

expression. Loops determine how often a block
of operations are executed depending on the

value of a tested expression.

3/137



Types of Control Flows

In functional languages, the key control flow is
function invocation: the body of the function is

executed within a scope in which the
arguments are bound to the parameters of the
invocation, and then the flow returns to the
context in which the invocation took place.

4/137



Types of Control Flows

In addition to these classical control flows,
programming languages include non local
control flow: in these constructs, flows exits

from a context of execution and continues at a
predefined point. These include exceptions
(try/catch/finally/throw), coroutines,
generators, async/await, and continuation.

5/137



Types of Control Flows

The study of control flow also includes a
description of concurrency such as threads and

their synchronization.

6/137



Interpreters and Control Flow: Asynchronous Programming and
Continuation Passing Style

In the interpreters we have designed in Chapter
2, we did not explicitly model the call stack. The

reason is that we relied on the call stack
mechanism of the meta-language to provide
the proper control of function calls and the

return to their calling location.

7/137



Interpreters and Control Flow: Asynchronous Programming and
Continuation Passing Style

In this sense, the interpreter we wrote does not
explain how control flow is implemented in the
object language, because we use the control

flow primitives of the meta language.

8/137



Interpreters and Control Flow: Asynchronous Programming and
Continuation Passing Style

In this chapter, we investigate the mechanisms
through which programming languages provide
control flow, and variants of control flow across

different programming paradigms.

9/137



Interpreters and Control Flow: Asynchronous Programming and
Continuation Passing Style

In particular, we present practical issues in
Asynchronous Programming, and techniques
allowing proper management of asynchronous
tasks: callbacks, promises, and co-routines.

10/137



Interpreters and Control Flow: Asynchronous Programming and
Continuation Passing Style

We review these topics in TypeScript - where
they practically fill an important role both in
the domains of client user interface (to deal

with User Interface events in a reactive manner)
and of backend servers (to deal with protocol

implementation which are IO-bound in a
resource efficient manner).

11/137



Interpreters and Control Flow: Asynchronous Programming and
Continuation Passing Style

We then introduce a technique called
continuation passing style (CPS), investigate its

properties and relate it to the way our
interpreters model control flow, recursion and

iteration.

12/137



Interpreters and Control Flow: Asynchronous Programming and
Continuation Passing Style

We switch back to Scheme and to our
Interpreter models and demonstrate a

systematic transformation from recursive to
CPS style and introduce techniques which
elucidate the way asynchronous and lazy
programming techniques are designed.

13/137



Interpreters and Control Flow: Asynchronous Programming and
Continuation Passing Style

Finally, we use the notion of continuation that
we have made concrete in the CPS

transformation, and use it to re-implement the
interpreter of Chapter 2 with explicit
description of control flow as general

continuations. In this model, the interpreter is
modeled as a function eval(exp, env,
cont) => (value, cont) where cont

represents the control state of the interpreter.
14/137



Interpreters and Control Flow: Asynchronous Programming and
Continuation Passing Style

At each step of the computation as explained
by the operational semantics, the interpreter
computes which expression to evaluate next

and where to pass the result of this evaluation.
We implement this new approach in the

language L7.

15/137



Function Invocation - Call Stack

When a function f calls a function g, g needs to
know where to return to (inside f) after it is

done. This information is usually managed with
a stack, the call stack. Let’s look at an example:

16/137



Function Invocation - Call Stack

function h(z) {
// Print stack trace
console.log(new Error().stack); // (A)

}
function g(y) {
h(y + 1); // (B)

}
function f(x) {
g(x + 1); // (C)

}
f(3); // (D)

17/137



Function Invocation - Call Stack

Initially, when the program is started, the call
stack is empty.

18/137



Function Invocation - Call Stack

After the function call f(3) in line D, the stack
has one entry:

Location in global scope

19/137



Function Invocation - Call Stack

After the function call g(x + 1) in line C, the
stack has two entries:

Location in f
Location in global scope

20/137



Function Invocation - Call Stack

After the function call h(y + 1) in line B, the
stack has three entries:

Location in g
Location in f

Location in global scope

21/137



Function Invocation - Call Stack

The stack trace printed in line A shows you
what the call stack looks like:

Error
at h (...:3:15)
at g (...:6:3)
at f (...:9:3)

22/137



Function Invocation - Call Stack

Next, each of the functions terminates and
each time the top entry is removed from the
stack. After function f is done, we are back in

global scope and the call stack is empty.

23/137



Function Invocation - Call Stack

The mechanism of a call stack to manage
function calls and their return is present in all

languages.

24/137



Function Invocation - Call Stack

The call stack is managed implicitly at runtime,
and is usually not exposed to the programmer.

25/137



Function Invocation - Call Stack

In JavaScript, as demonstrated above, the
Error() object provides access to the current
state of the call stack - so that we can inspect it
(this is mostly useful when debugging errors at
runtime). A similar facility exists in Java with

the method
Thread.currentThread().getStackTrace().

26/137



Event Loops

JavaScript as a programming language is used
in two main contexts:

• Inside Web browsers to implement user
interface client code

• Inside Node processes on the backend to
perform protocol handling code - usually,
exposing access to resources as a REST API.

27/137



Event Loops

In both of these application domains, it is
useful to think of the task of the JavaScript
interpreter as processing an event loop.

28/137



Event Loops

The following 25 minute presentation: Philip
Roberts: What the heck is the event loop

anyway? | JSConf EU 2014 provides a useful
explanation of what is the event loop in the

context of Web browsers.

The companion tool to this presentation
visualizes the mechanism of the event loop:

http://latentflip.com/loupe/.

29/137

https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://www.youtube.com/watch?v=8aGhZQkoFbQ
https://www.youtube.com/watch?v=8aGhZQkoFbQ
http://latentflip.com/loupe/


Event Loops in the Browser

Consider first a browser context. The browser
event loop executes browser-related tasks that

are fed into the browser task queue.

30/137



Event Loops in the Browser

Typical browser tasks are generated when an
HTML page is loaded into a browser tab, and

they include:

• Parsing HTML
• Executing JavaScript code in script elements
• Reacting to user input (mouse clicks, key
presses, etc.)

• Processing the result of asynchronous
network requests (calls to HTTP server)

31/137



Event Loops in the Browser

The last 3 are tasks that run JavaScript code, in
the JavaScript interpreter embedded in the

browser. These tasks terminate when the code
terminates. Then the next task from the queue

can be executed.

32/137



Event Loops in the Browser

For example, browsers offer a timer facility:
setTimeout() creates a timer, waits until it
fires and then adds a task to the queue. It has

the signature:

setTimeout(callback, ms)

33/137



Event Loops in the Browser

After ms milliseconds, callback is added to
the task queue. It is important to understand
that ms only specifies when the callback is
added, not when it actually is executed. That
may happen much later, especially if the event

loop is heavily loaded.

34/137



Event Loops in the Browser

Practically, the setTimeout primitive is a way
to submit a task to the event loop for later

execution.

35/137



Event Loops in the Browser

setTimeout(() => console.log("Later..."), 1000);
console.log("Immediately");

/*
Immediately
// after ~1 second
Later...

*/

36/137



Event Loops in the Browser

In the setTimeout example, the first
parameter is a function passed as an argument
(taking advantage of the support for closures in

the JavaScript language). The task that is
posted to the event queue is called a callback
(because it is called back by the event loop
when it can instead of being called by the

programmer directly).

37/137



Event Loops in the Browser

Note how the task is represented: it is a
procedure of no parameters. What we submit
to the task queue is a closure. The idiom:

() => { ... } indicates we “package” code
to be executed later. When and who executes it
later can be decided by the programmer or by

the runtime environment.

38/137



Event Loops in the Browser

Another typical example of callbacks in the
browser context is to associate callbacks to

User Interface widgets. A typical example would
be:

$("#btn_1").click(() => alert("Btn 1 Clicked"));

The anonymous function passed as an
argument to the click() method defines a

callback which is invoked by the Browser event
loop whenever the button is clicked.

39/137



Event Loops in Node

In the Node.js context, the event loop is driven
by events related to asynchronous I/O calls. For
example, when invoking the file system, to open
a file, the time taken by the operating system

(OS) system call is extremely large compared to
the time it takes to execute a function call.

40/137



Event Loops in Node

Instead of making the interpreter block and
wait for this system call to complete, the Node
interpreter submits a task to the event loop,
which consists of invoking the callback of the

system call when it has completed.

41/137



Event Loops in Node

This strategy requires the programmer to
change fundamentally the way I/O calls are
organized. All the primitive calls to the File
System (fs) module take a function as an

argument - which is called the callback which
is invoked when the slow FS operation has

completed.

42/137



Event Loops in Node

Compare the synchronous and asynchronous
versions of a file system call:

43/137



Event Loops in Node

// Synchronous (blocking) call to readFileSync
// The return value of the readFileSync procedure
// can be passed directly to the JSON.parse function.
const readJSONSync = (filename) => {
return JSON.parse(fs.readFileSync(filename, 'utf8'));

}

const writeJSONSync = (filename, map) => {
return fs.writeFileSync(filename,

JSON.stringify(map),
'utf8');

}

writeJSONSync("test", {id:1, text:'hello'});
console.log(readJSONSync("test"));

44/137



Event Loops in Node

// Asynchronous version using callbacks
const fs = require('fs');

const readJSON = (filename, callback) => {
fs.readFile(filename, 'utf8', (err, res) => {

if (err) callback(err, undefined);
else callback(undefined, JSON.parse(res));

});
}

const writeJSON = (filename, map) => {
fs.writeFile(filename, JSON.stringify(map), (err) => {
if (err) console.error(err);
else console.log("The file was saved: ", filename);

});
console.log("This is invoked before the callback is invoked.");

}

writeJSON("test.async", {id:1, test:'async'});
readJSON("test.async", (err, res) => { console.log(res); }); 45/137



Event Loops in Node

In the example above, the fs.writeFile
Node method takes 3 arguments:

• The name of the file to create
• The string to write into the file
• The callback to invoke when the
writeFile operation has completed.

46/137



Event Loops in Node

This pattern takes advantage of the fact that
JavaScript allows passing functions as

arguments to other functions: the callback is an
argument passed to the file system primitive.

47/137



Event Loops in Node

Programming with callbacks is not easy. We
cannot make the usual time-sequencing

assumptions we make in sequential code. In
the example above, we know that the

expression immediately after the call to
fs.writeFile() is executed before the

callback is invoked. This guarantee is part of
the semantics of the Node interpreter.

48/137



Event Loops in Node

But we cannot make any assumption as to
when the callback will be executed. It can take

a very long time. The problem for the
programmer is to decide where and how to

write code which depends on the completion of
the file system operation. Answering this

question will be the main topic of this chapter.

49/137



Event Loops in Node

Thinking of the JavaScript engine as a reactive
event loop instead of an active process which
invokes procedures is an important change of
perspective - which is related to the design
pattern of inversion of control and which
defines the event-driven programming

paradigm.

50/137

https://en.wikipedia.org/wiki/Inversion_of_control


Callbacks and the Call Stack

In asynchronous programming, callbacks are
not invoked in the same call stack as the

procedure that creates the callback. Instead,
the function which generates the task (the

asynchronous call) executes, and when it ends,
it creates a task (a closure) which is added to

the task queue.

51/137



Callbacks and the Call Stack

When the event loop determines that the
callback is ready to be called, the runtime
environment invokes the task with the

appropriate arguments. The signature of the
callback is determined by the asynchronous

function.

52/137



Callbacks and the Call Stack

For example, in the example above, the callback
for the readFile procedure is a function with
2 parameters (err, data) which represent
either an error object or the data that was read
from the file. These arguments are passed to

the callback when the event is signaled.

53/137



Callbacks and the Call Stack

The callback is a closure which is created in the
context of the asynchronous function. Hence,
according to the operational semantics of the

language, we know it has access to the
environment in which it was created (not to the
environment which is current when the closure

is invoked). See for example how the
environment of the callback is used:

54/137



Callbacks and the Call Stack

const readJSONTime = (filename, callback) => {
const invoked = new Date(); // Timestamp when the read is invoked.
fs.readFile(filename, "utf8", (err, res) => {
if (err) {

callback(err, undefined);
} else {

// This accesses a variable from the closure env.
console.log("Invoked at: ", invoked);
console.log("Callback at: ", new Date());
callback(undefined, JSON.parse(res));

}
});

};

readJSONTime("test.async", (err, res) => console.log(res));
/*

Invoked at: 2020-05-23T18:30:37.540Z
Callback at: 2020-05-23T18:30:37.548Z
{ id: 1, test: 'async' }

*/ 55/137



Callbacks and the Call Stack

Even if the environment is available, the
callback is evaluated in a different control
context - that is, in a different call stack.

56/137



Composing Asynchronous Functions

Composing synchronous functions is easy:
given a function f(x:Tx):Tf and a function
g(y:Ty):Tx - we can compose the calls by
simply passing the return value of g as a

parameter to f: f(g(y)). As long as the types
are compatible, this composition works (the

return type of g must be the parameter type of
f).

57/137



Composing Asynchronous Functions

Composing asynchronous functions is more
challenging: we must write a specific callback

each time we compose two functions:

g(y, (gRes) => f(gRes, callback))

58/137



Composing Asynchronous Functions

If we want to compose three functions - the
callbacks must be nested accordingly - instead

of f(g(h(x))) we must write:

h(x, (hRes) => {
g(hRes, (gRes) => {

f(gRes, callback);
});

});

59/137



Composing Asynchronous Functions

Note how the order of the occurrences has
changed: we read the program in the order in
which the functions are invoked (first invoked

h, then invoke g, then invoke f).

60/137



The Type of Asynchronous Functions

When we think of composing synchronous
functions, we check their type - that is, we

verify that the type returned by g matches the
type expected by f in order to enable the

composition f(g(x)).

61/137



The Type of Asynchronous Functions

Asynchronous functions do not return any
value - that is, they are of return type void.
Instead, they post a future task which will
receive a parameter of a certain type in the

future.

62/137



The Type of Asynchronous Functions

That is, if a synchronous function has type
f(x: Tx): Tf - the corresponding
asynchronous function will have type

asyncF(x: Tx,
callback: (Tf -> Tc)): void

63/137



Error Handling with Asynchronous Procedures (Success / Fail
Callbacks)

In many cases, asynchronous functions can fail
- this is the case for most I/O calls (file system,
networking calls) which are most likely to be

used in an asynchronous manner.

64/137



Error Handling with Asynchronous Procedures (Success / Fail
Callbacks)

To process the case of errors - the callback
passed to the async function must be prepared
to deal with either a success outcome, or with
an error outcome. Conceptually - this means
the async function has 2 callbacks: one to
process success, one to process failure.

65/137



Error Handling with Asynchronous Procedures (Success / Fail
Callbacks)

In the examples we reviewed above, we worked
with a callback that has two parameters - one
for error and one for the returned data in case

of success.

66/137



Error Handling with Asynchronous Procedures (Success / Fail
Callbacks)

When composing asynchronous functions with
two parameters of this type, we introduce
systematic complexity - because there is no
way to “stop early” the chain of calls when an
error is detected - as we would do by throwing
an exception in a synchronous case. We must
handle the error case at all steps of the chain

of calls.

67/137



Error Handling with Asynchronous Procedures (Success / Fail
Callbacks)

For example, assuming the function f, g and h
can return an error or a success, the

composition of f(g(h(x))) requires the
following structure:

68/137



Error Handling with Asynchronous Procedures (Success / Fail
Callbacks)

h(x, (hErr, hRes) => {
if (hErr) {
failCallback(hErr);

} else {
g(hRes, (gErr, gRes) => {

if (gErr) {
failCallback(gErr);

} else {
f(gRes, callback);

}
});

}
}); 69/137



Error Handling with Asynchronous Procedures (Success / Fail
Callbacks)

The following issues make the usage of
asynchronous functions difficult for the

programmer:

• all calls must deal with error cases
• sequence of calls or composed calls must
be translated into nested callbacks

• the types of the functions are obscure

70/137



Using Promises to Simplify Asynchronous Composition

Promises are a general programming pattern
designed to simplify asynchronous

composition, in particular error handling.

71/137



Using Promises to Simplify Asynchronous Composition

A promise represents the result of an
asynchronous operation - it is an object which
serves as the proxy for a delayed computation

which can be in different states:

• pending – The initial state of a promise -
before the computation has completed.

• fulfilled – The state of a promise
representing a successful operation.

• rejected – The state of a promise
representing a failed operation.

72/137



Using Promises to Simplify Asynchronous Composition

Once a promise is fulfilled or rejected, it
becomes immutable (i.e. it can never change

again).

73/137



Using Promises to Simplify Asynchronous Composition

Promises allow the client (the programmer) to
associate handlers with an asynchronous
action’s eventual success value or failure

reason.

74/137



Using Promises to Simplify Asynchronous Composition

This lets asynchronous methods return values
like synchronous methods: instead of

immediately returning the final value, the
asynchronous method returns a promise to
supply the value at some point in the future.

75/137



Using Promises to Simplify Asynchronous Composition

Clients of a promise register with the promise
by submitting the callbacks they want the

promise to execute. Since we want to simplify
error handling, the client of a promise can
register one callback for success completion

(fulfillment) and one for error handling
(rejection handler).

76/137



Using Promises to Simplify Asynchronous Composition

The registration is performed using two
methods of the Promise interface:

• Promise.then(successHandler)
• Promise.catch(rejectionHandler)

77/137



Using Promises to Simplify Asynchronous Composition

The handlers are functions which are submitted
to be executed in the future, when the promise

is resolved (either fulfilled or rejected).

78/137



Using Promises to Simplify Asynchronous Composition

At this point, our understanding of a promise is
that it is an object with the following state:

• task: the asynchronous task to be computed
• value: the result of the task when it is
resolved

• state: state of the promise (pending,
fulfilled or rejected)

• handlers: the handlers for success and
failure

79/137



Using Promises to Simplify Asynchronous Composition

The key events in the lifecycle of a promise
correspond to state transitions:

80/137



Using Promises to Simplify Asynchronous Composition

• created in state Pending
• pending to fulfilled: triggered when the
async computation completes (usually by
the event loop); triggers the success
handlers.

81/137



Using Promises to Simplify Asynchronous Composition

• pending to rejected: triggered when the
async computation ends in error; triggers
the failure handlers.

• attach handlers: if the state is pending, just
add the handlers to the internal state of the
promise, else immediately invoke the new
handler with the stored value of the
promise.

82/137



Making a Promise

To construct a promise from an asynchronous
function with a callback, we use the Promise
constructor and abstract the callbacks for

success and failure:
const readFilePromise = (filename: string): Promise<string> =>
new Promise<string>((resolve, reject) => {
fs.readFile(filename, (err, res) => {
if (err) {

reject(err);
} else {

resolve(res.toString("utf8"));
}

});
});

83/137



The Type of a Promise

A promise is a container for a value which may
become available in the future. A function such

as readFilePromise above returns a
promise - in contrast to the original readFile

asynchronous function which had a void
return type.

84/137



The Type of a Promise

This ends up simplifying the type and making it
more similar to the familiar synchronous

version:
readFileSync(filename: string): string;

readFile(filename: string,
callback: (err, data:string) -> T): void;

readFilePromise(filename: string): Promise<string>;

TypeScript supports generic Promise types to
document this type of return value.

85/137



Using a Promise

We use the Promisified version of the
asynchronous function according to the

Promise client pattern:

• We decouple the creation of the promise
from its consumption.

• We separate success and error handling in
two separate concerns.

86/137



Using a Promise

To this end, we use the 2 methods of the
Promise object: then(successHandler)

and catch(errorHandler):

87/137



Using a Promise

const testContent = readFilePromise("test.async");
testContent

.then((content: string) =>
console.log("Content:", JSON.parse(content)))

.catch((err) => console.error(err));

88/137



Using a Promise

Note the style that the then and catch
methods implement: they return a value of the

same type as the object on which they are
invoked, so that they can be chained. This style

is called the fluent interface pattern.

89/137

https://en.wikipedia.org/wiki/Fluent_interface


Chaining Promises

Using promises, we can achieve 3 main benefits
over the structure that callbacks only would

require:

90/137



Chaining Promises

• The type of functions returning Promises is
more informative and similar to the simple
types of synchronous versions

• We can chain sequences of asynchronous
calls in a chain of .then() calls.

• We can aggregate error handling in a single
handler for a chain of calls, in a way similar
to exception handling.

91/137



Chaining Promises

The following example illustrates these 3
benefits:

• We want to read a file containing a JSON
value

• Update the content of the JSON
• Write back the updated value of the JSON to
the file

92/137



Chaining Promises

This requires a chain of asynchronous calls
(reading the file and writing it).

Note that the error handler needs to be
specified only once for the two operations

93/137



Chaining Promises

const readFilePromise = (filename: string): Promise<string> =>
new Promise<string>((resolve, reject) => {
fs.readFile(filename, (err, res) => {
if (err) {

reject(err);
} else {

resolve(res.toString("utf8"));
}

});
});

94/137



Chaining Promises

const writeFilePromise =
(filename: string, content: string): Promise<void> =>
new Promise((resolve, reject) => {
fs.writeFile(filename, content, (err) => {
if (err) {

reject(err);
} else {

resolve();
}

});
});

95/137



Chaining Promises

// Chain the calls together
const readUpdateWrite = (filename: string): Promise<void> =>
readFilePromise(filename)
.then((content) => {
let j = JSON.parse(content);
j.lastModified = new Date();
return writeFilePromise(filename, JSON.stringify(j));

})
.catch((err) => console.error(err));

96/137



Chaining Promises

writeFilePromise("promiseExample.async",
JSON.stringify({ a: 1 }))

.then(() => console.log("File is created"))

.then(() => readFilePromise("promiseExample.async"))

.then((content) => console.log(JSON.parse(content)))

.then(() => readUpdateWrite("promiseExample.async"))

.then(() => console.log("File is updated"))

.then(() => readFilePromise("promiseExample.async"))

.then((content) => console.log(JSON.parse(content)));

97/137



Promises Summary

Promises simplify the usage of asynchronous
functions on three aspects:

98/137



Promises Summary

• Types of functions that return promises are
clearer: for a synchronous function
f(x: T1): T2 the corresponding Promise
version will have type
fp(x: T1): Promise<T2>.
This is in contrast with a callback-based
version which would have type
fc(x: T1, (err: Error, res:T2) =>
T3): void.

99/137



Promises Summary

• Composition is simplified by chaining
.then(handler).

• Error handling can be specified in a single
place, as errors are cascaded through
promises in a chain.

100/137



From Promises to async / await

Promises improve significantly over
callback-based asynchronous functions, but
still cannot be used as simply as synchronous
functions within simple control flow operations
(sequence, conditionals, composition). Instead,
we still need to pass the promise to a function
using the .then(function) mechanism.

101/137



From Promises to async / await

Promises are made even easier to use through
the mechanism of async and await syntactic

sugar which was introduced in standard
JavaScript around 2017. These two new syntactic
keywords introduce syntactic variants of the
pattern which consists of building a promise

and then chaining code into the then and catch
methods of the promise.

102/137



From Promises to async / await

So that for example:
// Chain the calls together
const readUpdateWrite = (filename: string): Promise<void> => {

return readFilePromise(filename)
.then((content) => {

let j = JSON.parse(content);
j.lastModified = new Date();
return writeFilePromise(filename, JSON.stringify(j));

})
.catch((err) => console.error(err));

};

103/137



From Promises to async / await

is equivalent to the following syntactic variant:
// The async/await version
const readUpdateWrite = async (filename: string): Promise<void> => {

try {
const content = await readFilePromise(filename);
let j = JSON.parse(content);
j.lastModified = new Date();
return writeFilePromise(filename, JSON.stringify(j));

} catch (err) {
return console.error(err);

}
};

104/137



From Promises to async / await

The specification for async and await
explains how async and await are syntactic

abstraction around Promises.

105/137

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function


From Promises to async / await

Key points about using async and await:

• async functions always return a Promise
value.

• await can only be used within the body of
an async function.

• await is followed by a call that produces a
Promise (usually an async function)

106/137



From Promises to async / await

Key points about using async and await:

• await can throw an exception
(corresponding to the fact that the promise
that is awaited is rejected) - it should
therefore be wrapped in try/catch
construct.

107/137



From Promises to async / await

await <something producing a promise>; <continuation>;

is equivalent to:
<something producing a promise>.then(() => <continuation>);

108/137



From Promises to async / await

The following example is from here:
function logFetch(url) {

return fetch(url)
.then((response) => response.text())
.then((text) => {

console.log(text);
})
.catch((err) => {

console.error("fetch failed", err);
});

}

109/137

https://developers.google.com/web/fundamentals/primers/async-functions


From Promises to async / await

is equivalent to:
async function logFetch(url) {

try {
const response = await fetch(url);
console.log(await response.text());

} catch (err) {
console.log("fetch failed", err);

}
}

110/137



Generators and Co-routines

JavaScript (and other programming languages,
including Python and Scheme) offer a

mechanism called generators which can be
combined with promises to provide excellent

support for asynchronous programming.

111/137



Generators and Co-routines

Generators are functions which can be exited
and later re-entered. Their context (variable

bindings and current control locations) will be
saved across re-entries. A generator is created

with the keyword function*.

112/137



Generators and Co-routines

Calling a generator function does not execute
its body immediately; an iterator object for the
function is returned instead. An iterator is a

map with two fields:
{value: any, done: boolean} and that

has a next() method:

113/137



Generators and Co-routines

interface IteratorResult {
value: any;
done: boolean;

}

interface Iterator {
next(): IteratorResult;

}

114/137



Generators and Co-routines

When the iterator’s next() method is called,
the generator function’s body is executed until
the first yield expression, which specifies the

value to be returned from the iterator.

115/137



Generators and Co-routines

The next() method returns an object with a
value property containing the yielded value
and a done property which indicates whether
the generator has yielded its last value as a
boolean. Calling the next() method with an
argument will resume the generator function
execution, replacing the yield statement where
execution was paused with the argument from

next().

116/137



Generators and Co-routines

A return statement in a generator, when
executed, will make the generator’s done field
true. If a value is returned, it will be passed
back as the value. A generator which has

returned will not yield any more values. (That
is, return x is like yield x plus the side

effect that the generator is now done).

117/137



Generators and Co-routines

Let us examine a few examples of using
generators:

118/137



Generators and Co-routines

function* idMaker() {
let index = 0;
while (index < 3) {
yield index++;

}
}

119/137



Generators and Co-routines

const gen = idMaker();

console.log(gen.next()); // { value: 0, done: false }
console.log(gen.next()); // { value: 1, done: false }
console.log(gen.next()); // { value: 2, done: false }
console.log(gen.next()); // { value: undefined, done: true }

120/137



Generators and Co-routines

We can also pass a parameter back to the
generator by passing it through the next(val)

call:

121/137



Generators and Co-routines

function* demo() {
const res = yield 10;
assert(res === 32);
return 42;

}

const d = demo();
console.log(d.next()); // { value: 10, done: false }
console.log(d.next(32)); // { value: 42, done: true }
console.log(d.next()); // { value: undefined, done: true }

122/137



Generators and Co-routines

The function* special form is used to
construct a generator. Within the body of a

generator, the yield special form can be used.

123/137



Generators and Co-routines

Generators are most often consumed inside
loops - and as their names indicate they
generate a sequence of values in a lazy

manner: instead of eagerly constructing a list
of values, the generator knows how to generate

the values only when asked to.

124/137



Generators and Co-routines

The for loop of JavaScript is a syntax which is
adapted to consume any object which

implements the iterator protocol, and hence
works well with generators:
function* foo() {

yield 1;
yield 2;
return 3;

}

for (let v of foo()) {
console.log(v);

}
125/137



Generators and Co-routines

Generators can be used to generate computed
sequences - which can even be infinite, since
they are only generated when requested:

function* range(start, end) {
for (let i = start; i < end; i++) {
yield i;

}
}

for (let n of range(1, 5)) {
console.log(n);

}

126/137



Generators and Co-routines

A generator can produce a potentially infinite
stream of data. Such a generator is useful in
case the consumer of the stream can limit the

number of items to actually extract.

127/137



Generators and Co-routines

The following example demonstrates an infinite
generator and a higher order function called
take which takes as input a number and a

generator - and returns a new generator which
generates less than n items from the generator:

128/137



Generators and Co-routines

function* naturalNumbers() {
for (let n = 0; ; n++) {
yield n;

}
}

function* take(n, generator) {
for (let v of generator) {
if (n <= 0) return;
n--;
yield v;

}
}

for (let n of take(3, naturalNumbers())) {
console.log(n);

}
129/137



Generators and Co-routines

Generators are an efficient mechanism to
combine iterations without copying lists of data

at each stage.

Consider the following examples:

130/137



Generators and Co-routines

function* mapGen(generator, f) {
for (let v of generator) {
yield f(v);

}
}

function* filterGen(generator, pred) {
for (let v of generator) {
if (pred(v)) {
yield v;

}
}

}

131/137



Generators and Co-routines

Such operators can be combined together -
with the advantage that the data is not copied
between each stage. Instead, each time an

element of the combination is requested, the
chain of functions is evaluated:

132/137



Generators and Co-routines

const evenSquares =
filterGen(mapGen(naturalNumbers(), x => x * x),

x => x % 2 === 0);

for (let n of take(4, evenSquares)) {
console.log(n);

}

133/137



Generators and Co-routines

const verboseSquare = (x) => {
console.log("square", x, "->", x * x);
return x * x;

};

const verboseIsEven = (x) => {
console.log("even?", x, "->", x % 2 === 0);
return x % 2 === 0;

};

const evenSquaresVerbose = filterGen(
mapGen(nats(), verboseSquare),
verboseIsEven

);

for (let n of take(3, evenSquaresVerbose)) {
console.log("evenSquaresVerbose", n);

} 134/137



Generators and Co-routines

The order in which the functions are executed is
item-by-item: map-square / filter-even / take

135/137



Generators and Co-routines

square 0 -> 0
even? 0 -> true
evenSquaresVerbose 0
square 1 -> 1
even? 1 -> false
square 2 -> 4
even? 4 -> true
evenSquaresVerbose 4
square 3 -> 9
even? 9 -> false
square 4 -> 16
even? 16 -> true
evenSquaresVerbose 16
square 5 -> 25
even? 25 -> false
square 6 -> 36
even? 36 -> true

136/137



Generators and Co-routines

In contrast, the traditional map and filter
functions allocate a list (an array) to store the

intermediary results. The functions are
evaluated on all the array at once - square on
all the items of the input array first, then even

on all the items of the output array.

137/137


