
Principles of Programming Languages
Operational Semantics

1/90

Operational Semantics

The operational semantics of a programming
language is specified by a set of formal

evaluation rules that operate on the AST of an
expression. The evaluation process can be
specified as an algorithm eval(exp) which

maps an AST to a Value.

2/90

Operational Semantics

In this lecture, we go back to the definition of
languages L1 to L3 (which are all subsets of
Scheme) and present their operational

semantics in a more formal manner, based on
the definition of the AST of the languages and

the method of structural induction.

3/90

Operational Semantics

For each language, we also specify the set of
Values that can be computed by the language
and review different implementation options

for the domain of Values.

4/90

Operational Semantics

In the previous lectures, we studied the formal
description of the syntax of programming
languages. In subsequent lectures, we will

study the formal description of their semantics
- using the operational semantics approach.

The tool we use is to describe the
implementation of interpreters for these
languages using a functional subset of

TypeScript as a meta-language.

5/90

Operational Semantics

The pipeline of operations we describe is:
Concrete syntax (string) ===⇒

Parser
Abstract Syntax (AST)

======⇒
Interpreter

Value

6/90

L1 Operational Semantics

L1 Operational Semantics

L1 is a language in which primitive operators
and primitive values can be combined

recursively. In addition, composite expressions
can be given a name and bound to variables

using the define special form.

7/90

L1 Operational Semantics

For example, the following is a program in L1:

(L1
(define x (+ (* 2 3) (* 4 5)))
(+ x (* 2 2)))

8/90

L1 Syntax

Let us summarize the syntax of L1 using the
BNF + Abstract Syntax specification we have

developed in the previous lectures:

9/90

L1 Syntax

<program> ::= (L1 <exp>+) // program(exps:List(exp))
<exp> ::= <define-exp> | <cexp>
<define-exp> ::= (define <var-decl> <cexp>)

// def-exp(var:var-decl, val:cexp)
<cexp> ::= <num-exp> // num-exp(val:Number)

| <bool-exp> // bool-exp(val:Boolean)
| <prim-op> // prim-op(op:String)
| <var-ref> // var-ref(var:String)
| (<cexp> <cexp>*)
// app-exp(rator:cexp, rands:List(cexp))

<prim-op> ::= + | - | * | / | < | > | = | not
<num-exp> ::= a number token
<bool-exp> ::= #t | #f
<var-ref> ::= an identifier token
<var-decl> ::= an identifier token

10/90

Representing Primitive Operators

Looking at the set of values, we decide to
represent Number and Boolean using the

corresponding value types in the
meta-language (in our case, in TypeScript).

11/90

Representing Primitive Operators

We must then decide how to represent
primitive operators as computed values - so

that we can decide which value to return when
we compute the expression +.

12/90

Representing Primitive Operators

In Scheme, when we compute this expression,
we get:

> +
#<procedure:+>

13/90

Representing Primitive Operators

That is, the value of the + expression (which is
an expression of type Symbol) is a procedure in
Scheme. If we implement primitive values as

procedures, we rely on the fact that our
meta-language (TypeScript) is a functional

language which supports fist-class procedures:
a procedure value can be bound to a variable.

14/90

Representing Primitive Operators

In JavaScript (and TypeScript), primitive
operators are not variables bound to
procedures. This can be verified by the

following test:

const plus = (x, y) => x + y;
console.log(plus);
// => [Function: plus]
console.log(+);
// => SyntaxError: Unexpected token ')'

15/90

Representing Primitive Operators

We observe that if we bind a function to a
variable, then its value is returned as an object

of type [Function]. But in contrast, the
expression + (where + can be any primitive
operator) is not a well formed expression in

TypeScript.

16/90

Representing Primitive Operators

We decide in our language L1 to represent
primitive operators as strings, and in the code
of the interpreter, map each primitive operator
to the underlying primitive operation in the
meta-language. We will adopt this solution in
our first model and in our implementation.

17/90

Representing Primitive Operators

We represent primitive operators as a specific
expression type in the AST

PrimOp(op:PrimOpKeyword), where
PrimOpKeyword is an enumerated type of all
the defined primitive operators. The value of a
PrimOp expression is itself when we evaluate

the expression.

18/90

Representing Primitive Operators

When we apply a primitive operator to
arguments, we explicitly dispatch to each

known primitive operator in the language and
apply the corresponding primitive operation in

the meta-language. The exhaustive
enumeration of operators is terminated by a

never case.

19/90

Representing Primitive Operators

// There are type errors which we will address in L3
const applyPrimitive =

(proc: PrimOp, args: Value[]): Result<Value> =>
proc.op === "+" ? makeOk(reduce((x, y) => x + y, 0, args)) :
proc.op === "-" ? makeOk(reduce((x, y) => x - y, 0, args)) :
proc.op === "*" ? makeOk(reduce((x, y) => x * y, 1, args)) :
proc.op === "/" ? makeOk(reduce((x, y) => x / y, 1, args)) :
proc.op === ">" ? makeOk(args[0] > args[1]) :
proc.op === "<" ? makeOk(args[0] < args[1]) :
proc.op === "=" ? makeOk(args[0] === args[1]) :
proc.op === "not" ? makeOk(!args[0]) :
proc.op; // never

20/90

Variadic Primitives

Note the fact that we adopt Scheme’s model for
the arithmetic operators: they are variadic -
meaning that they can accept any number of
arguments (from 0 and up). Since the AST of
application forms (AppExp) supports any
number of arguments, the syntax of L1 also
supports expressions of the form: (+ 1 2),
(+ 1 2 3 4) and even (+ 1) and (+). In
the meta-language, to apply a procedure to a

list of arguments, we use reduce.
21/90

Variadic Primitives

Think about what the value of (+) and (*)
without parameters should be.

22/90

Variadic Primitives

It turns out the handling of - and / is more
complex than + and * because they are not

associative operators. The code above does not
reflect correctly the way - works in Scheme.

This is revised in the interpreter for L3.

Check in Scheme what is the value returned by
(-) and (/).

23/90

Type Strict Primitives

We have already pointed at the difference in
behavior of primitives in Scheme and in

JavaScript:

• Scheme has type-strict primitives. Invoking
a primitive like + with non-number
parameters throws an error.

• JavaScript has type-flexible primitives.
Primitives do not fail in general when given
unexpected data types as arguments.

24/90

Type Strict Primitives

In the implementation of the L1 interpreter, we
do not test the type of arguments at runtime.
We also do not attempt to “do the right thing”
when given unexpected arguments. Instead we

silently compute “junk”.

25/90

Type Strict Primitives

In the implementation of L3, we attempt to add
more type checking for primitives.

26/90

L1 Values

To determine which values can be computed by
L1 programs, we proceed inductively on the

structure of L1-ASTs.

27/90

L1 Values - Atomic Expressions

Atomic expressions can return as a value:

• A number (NumExp)
• A boolean (BoolExp)
• The value of a primitive operator (PrimOp)
• The value of a variable reference (VarRef) -
which can be any value.

28/90

L1 Values - Define Expressions

Define expressions return a void value.

29/90

L1 Values - Composite Expressions

Composite expressions return a value returned
by the application of a primitive operator. This
can be proved by induction - the value of a

compound expression will always be either the
value of a literal expression or the result of a
primitive operator applied to values. We posit
that primitive operators are delegated to the
corresponding TypeScript primitives, which

return either:

30/90

L1 Values - Composite Expressions

• A number (+, -, *, /)
• A boolean (<, >, =, not)

31/90

L1 Values - Composite Expressions

Hence, composite expressions will return either
a number, a boolean value or one of the literal
values that atomic expressions can return.
Altogether, we conclude that the set of all

possible values computed by L1 programs is:

Value = Number | Boolean | PrimOp | Void

32/90

L1 Value Types

At this point, the type representing the values
that can be computed by L1 expressions is:

Value = Number | Boolean | PrimOp
We need to decide how to handle the case of

define expressions.

33/90

L1 Value Types

In Scheme, a define expression does not return
any value:

> (define x 1)
>

34/90

L1 Value Types

This is unusual for a functional language -
where all expressions are expected to return a
value. The reason define does not return a
usable value is that it is only used for its

side-effect (which is to create a new binding for
the variable with universal scope).

35/90

L1 Value Types

In non-functional languages, such expressions
are called statements - as opposed to

expressions which return a value.

36/90

L1 Value Types

To avoid the dichotomy expression/statement,
we will adopt Scheme’s model which is that
expressions that have a side-effect return a
special type of value - which is called void.
The void type contains a single value (also

called void).

37/90

L1 Value Types

In TypeScript, there are multiple strange values
that can be used to encode the void value. We
choose to use the undefined TypeScript value

for this purpose.

38/90

L1 Value Types

We thus adopt the convention that the value of
a define expression will be the undefined

value.
Value = number | boolean | string | PrimOp | undefined

39/90

L1 Evaluation Rules

The operational semantics of L1 is a function
which maps inductively any Expression in L1 to

a Value:

eval : Expression→ Value

Let us define this algorithm in an inductive
manner - by starting from the base cases -
atomic expressions, and then moving up to

composite expressions.

40/90

Evaluation of Atomic Expressions

• eval(NumExp(val)) => val
Number atomic literal expressions evaluate
to number values.

• eval(BoolExp(val)) => val
Boolean atomic literal expressions evaluate
to boolean values true and false.

41/90

Evaluation of Atomic Expressions

• eval(PrimOp(op)) => PrimOp(op)
Primitive procedures evaluate to the
primitive operation.

• eval(VarRef(var)) =>
applyEnv(env, var)
Variables are evaluated by looking up their
value in the global environment.

42/90

Evaluation of Compound Forms

The evaluation of compound forms involves the
recursive evaluation of parts of the compound
forms, followed by a rule that determines how
to combine the resulting values to obtain the

value of the compound form.

43/90

Evaluation of Compound Forms

For special forms, not all the parts of the
compound form are always evaluated. The
order in which the parts is evaluated is

determined by the computation rule of the
compound form type. In L1 there is a single

special form - define.

44/90

Evaluation of Compound Forms

• eval(DefineExp(var, val)) =>
;; var is of type VarDecl
;; val is type CExp
let val: Value = eval(val)
add the binding <VarDecl.var, val>

to the global environment.
return undefined.

45/90

Evaluation of Compound Forms

• eval(AppExp(rator, rands)) =>
;; rator is of type CExp
;; rands is of type CExp[]
let proc = eval(rator)
let args = map(eval, rands)
return applyProc(proc, args)

46/90

Global Environment, Variable References and Define Expres-
sions

In the specification of the eval algorithm
above, we need to clarify two clauses:

• eval(VarRef(var)) =>
applyEnv(env, var)
Variables are evaluated by looking up their
value in the global environment.

• eval(DefineExp(var,val)) =>
Add the binding to the global environment.

47/90

Global Environment, Variable References and Define Expres-
sions

Both of these clauses rely on the object we
called the global environment.

48/90

Global Environment, Variable References and Define Expres-
sions

We model an environment as a partial function
which maps variable references to values. A
function is partial when it is defined on a

restricted domain - in our case, not all variable
references will be defined in a given

environment, and the function is actually a
finite function (defined on a finite set of

values).

49/90

Global Environment, Variable References and Define Expres-
sions

We model environments as an inductive data
type, to reflect the fact that environments can
be extended (this is what happens when we
define a new variable and bind it to a value).

50/90

Global Environment, Variable References and Define Expres-
sions

We adopt the method discussed in a previous
lecture to model environments (which are
mutable data structures) in a functional

manner.

51/90

Global Environment, Variable References and Define Expres-
sions

Recall that the strategy to implement mutable
data structures in a functional manner consists

of the following steps:

52/90

Global Environment, Variable References and Define Expres-
sions

• Define a data type for the possible values of
the data structure as a disjoint union - in
particular, distinguish atomic value types
and recursive value types.

53/90

Global Environment, Variable References and Define Expres-
sions

• For each mutation operation, define a
distinct value constructor for the data type
which receives as a parameter the mutation
parameters together with the original value
of the object and returns a new value which
represents the result of the mutation.

54/90

Global Environment, Variable References and Define Expres-
sions

• Clients that perform mutation operations
obtain a new value which represents the
result of applying the mutation on the old
version of the object.

55/90

Global Environment, Variable References and Define Expres-
sions

In the case of the environment data structure,
we obtain the following inductive data type

definition:
env ::= empty-env | extended-env
empty-env // empty-env()
extended-env(var, val, env)
// extended-env(var:string,
// val:Value,
// next-env:env)

56/90

Global Environment, Variable References and Define Expres-
sions

That is, we define an environment as either:

• An empty environment
• Or an extended environment which maps
variables (strings) to values on top of an
existing environment.

57/90

Global Environment, Variable References and Define Expres-
sions

On the basis of this inductive definition, we
define a single value accessor for environment,

which we call applyEnv:

58/90

Global Environment, Variable References and Define Expres-
sions

type Env = EmptyEnv | NonEmptyEnv;

const isEnv = (x: any): x is Env =>
isEmptyEnv(x) || isNonEmptyEnv(x);

59/90

Global Environment, Variable References and Define Expres-
sions

interface EmptyEnv {
tag: "EmptyEnv"

}

const makeEmptyEnv = (): EmptyEnv =>
({tag: "EmptyEnv"});

const isEmptyEnv = (x: any): x is EmptyEnv =>
x.tag === "EmptyEnv";

60/90

Global Environment, Variable References and Define Expres-
sions

export interface NonEmptyEnv {
tag: "Env";
var: string;
val: Value;
nextEnv: Env;

};

const makeEnv =
(v: string, val: Value, env: Env): NonEmptyEnv =>
({tag: "Env", var: v, val: val, nextEnv: env});

const isNonEmptyEnv = (x: any): x is NonEmptyEnv =>
x.tag === "Env";

61/90

Global Environment, Variable References and Define Expres-
sions

const applyEnv =
(env: Env, v: string): Result<Value> =>
isEmptyEnv(env) ? makeFailure("var not found " + v) :
env.var === v ? makeOk(env.val) :
applyEnv(env.nextEnv, v);

62/90

Global Environment, Variable References and Define Expres-
sions

We lookup a variable v in an environment env
recursively:

• No variable is defined in an empty
environment - in this case, we return a
Failure.

63/90

Global Environment, Variable References and Define Expres-
sions

We lookup a variable v in an environment env
recursively:

• Else, for an environment made up of the
binding var -> val and a next
environment nextEnv: If var is the same
as v, return the corresponding val.
Otherwise, continue searching in nextEnv.

64/90

Global Environment, Variable References and Define Expres-
sions

As usual - this computation is an instance of
the structural induction principle.

65/90

Global Environment, Variable References and Define Expres-
sions

Here is an example of using this data structure:

66/90

Global Environment, Variable References and Define Expres-
sions

isFailure(applyEnv(makeEmptyEnv(), "x")); // => true
applyEnv(makeEnv("x", 1,

makeEmptyEnv()), "x"); // => Ok(1)
isFailure(applyEnv(makeEnv("x", 1,

makeEmptyEnv()), "y")); // => true
applyEnv(makeEnv("y", 2,

makeEnv("x", 1,
makeEmptyEnv())), "x"); // => Ok(1)

applyEnv(makeEnv("x", 2,
makeEnv("x", 1,
makeEmptyEnv())), "x"); // => Ok(2)

67/90

Handling Variable References

Given this definition of the environment data
type, let us review how to handle variable

references and define expressions.

68/90

Handling Variable References

We first observe that all mutation to the
environment are necessary when evaluating a
program (that is, a sequence of expressions
that can include define expressions), while
the evaluation of CExp expressions does not
require any mutation. Yet, the evaluation of
variable references (VarRef expressions)

requires access to an environment.

69/90

Handling Variable References

We split the implementation of the eval
algorithm in two cases:

• L1applicativeEval(exp, env):
evaluate a CExp AST with reference to a
given environment.

• evalL1program(program): evaluate a
program.

70/90

Handling Variable References

L1applicativeEval handles the case of
evaluating a variable reference with respect to
a given environment. The evaluation rule for

VarRef expressions is now clarified:
L1appEval(VarRef(var)) => applyEnv(env, var)
;; Variables are evaluated by looking up
;; their value in the global environment.

71/90

Handling DefineExp and Evaluating Programs

Let us now address the issue of evaluating a
program - which is a sequence of expressions,
which can be either define expressions, which
update the current environment (and return
void), or CExp expressions, which return a

value.

72/90

Handling DefineExp and Evaluating Programs

evalL1program(program) receives a
program, which includes an ordered sequence
of expressions. It iterates over the expressions
and depending on the type of each expression,

it performs the following:

73/90

Handling DefineExp and Evaluating Programs

• DefineExp(var, val) =>
let value = L1applicativeEval(val, env)
if there are more expressions in the program:

let newEnv = extendEnv(var, val, env)
continue evaluating remaining
expressions in newEnv

else
return void

74/90

Handling DefineExp and Evaluating Programs

• CExp =>
let value = L1applicativeEval(cexp, env)
if there are more expressions in the program:

continue evaluating remaining
expressions in env

else
return value

75/90

Handling DefineExp and Evaluating Programs

The function L1applicativeEval has the
typical structure of a syntax-driven function
with a conditional clause for each type of AST

expression.

76/90

Handling DefineExp and Evaluating Programs

const L1applicativeEval = (exp: CExp, env: Env): Result<Value> =>
isNumExp(exp) ? makeOk(exp.val) :
isBoolExp(exp) ? makeOk(exp.val) :
isPrimOp(exp) ? makeOk(exp) :
isVarRef(exp) ? applyEnv(env, exp.var) :
isAppExp(exp) ? bind(

mapResult((rand: CExp) =>
L1applicativeEval(rand, env),

exp.rands),
(rands: Value[]) =>

L1applyProcedure(exp.rator, rands)) :
exp; // never

77/90

Handling DefineExp and Evaluating Programs

evalL1program invokes evalSequence to
evaluate the sequence of expressions that
appear inside the program with an initially

empty environment. The expressions can either
be of type DefineExp (which modify the

current environment) or CExp (which have no
side-effect).

78/90

Handling DefineExp and Evaluating Programs

To model the updates of the current
environment in a functional manner, we
implement in the evalDefineExps the

process that creates a new environment after
each define, and passes the new environment

to the evaluation of the next expressions.

79/90

Handling DefineExp and Evaluating Programs

const evalL1program = (program: Program): Result<Value> =>
evalSequence(program.exps, makeEmptyEnv());

80/90

Handling DefineExp and Evaluating Programs

const evalSequence = (seq: Exp[], env: Env): Result<Value> =>
isEmpty(seq) ? makeFailure("Empty sequence") :
evalSequenceFirst(first(seq), rest(seq), env);

const evalSequenceFirst =
(first: Exp, rest: Exp[], env: Env): Result<Value> =>
isDefineExp(first) ? evalDefineExps(first, rest, env) :
isEmpty(rest) ? L1applicativeEval(first, env) :
bind(L1applicativeEval(first, env),

_ => evalSequence(rest, env));

81/90

Handling DefineExp and Evaluating Programs

const evalDefineExps =
(def: DefineExp, exps: Exp[], env: Env): Result<Value> =>
bind(L1applicativeEval(def.val, env),

(rhs: Value) => evalSequence(exps,
makeEnv(def.var.var, rhs, env)));

82/90

Handling DefineExp and Evaluating Programs

Observe that we implemented a form of
mutation in L1 (the evaluation of define)
without mutation in the interpreter. This is

obtained by using a functional implementation
of the environment and threading the updated

value of this environment (which is a new
constructed value, obtained without mutation)

at each step of the evaluation process.

83/90

Procedure Calls

The last aspect of the operational semantics
that is left to clarify is how procedure calls are
handled. In L1, the only procedures that can be
applied are primitives, since we have not yet
provided a way to define user procedures (we

will do this next in L2).

84/90

Procedure Calls

Consider for example the computation of this
L1-expression:

(+ (* 2 3) (- 3 2))

85/90

Procedure Calls

The way this expression is evaluated according
to the computation rule for

AppExp(rator, rands) expressions is:
isAppExp(exp) ?

bind(mapResult((rand) => L1applicativeEval(rand, env),
exp.rands),

(rands) => L1applyProcedure(exp.rator, rands)) :

86/90

Procedure Calls

We first evaluate all the arguments, then we
invoke the procedure on the computed values.

In the example above, it means that we
compute the expression in this order:

• Compute (* 2 3) and (- 3 2)
• Compute (+ 6 1)

87/90

Procedure Calls

Recursively, if we have an expression that is
nested deeper, we start by computing the

inner-most sub-expression, and then move up
towards the root of the AST.

88/90

Procedure Calls

The operational semantics does not specify the
order of execution among the arguments - we
could compute (* 2 3) first and (- 3 2)

next, or in reverse, or even together (in parallel).

89/90

Procedure Calls

The procedure L1applyProcedure does not
need an env parameter because it receives

only values, not expressions, and in particular,
it does not receive any variable reference or any
object that may contain a variable reference.

90/90

	 L1 Operational Semantics

