
Principles of Programming Languages
Type Inference System

1/92



Previously

In the previous lecture, we have introduced the
Type Equations algorithm to perform Type
Inference over Scheme (L5) expressions.

In this lecture, we present two distinct
implementations of this algorithm - one which
is a “literal” application of the algorithm, and
one which is an optimized transformation of
the algorithm relying on more compact data
structures and less traversals of the program.

2/92



Architecture of the Type Equations Inference System

The Type Inference with Type Equations system
builds on the L5 AST abstract syntax defined for

the Type Checker. It introduces two new
modules:

• Substitution ADT
• Type Equation Algorithm

3/92



The Substitution ADT

The Substitution ADT is a direct implementation
of the mathematical substitution object

introduced in the previous lecture:

4/92



The Substitution ADT

Definition: Type Substitution
A type-substitution s is a mapping from a finite
set of type variables to a finite set of type
expressions, such that s(T) does not include T.

5/92



The Substitution ADT

As usual, when defining substitutions and
partial functions (we have already

implemented such data structures when talking
about environments), we adopt an inductive

implementation to define the Type Substitution
data type, which is the union of two disjoint

types:

• The empty substitution
• Non-empty substitutions:
sub(tvars: TVar[], texps: TExp[])

6/92



The Substitution ADT

The functional interface of the Substitution
data type includes:

• Value constructors for the empty
substitution makeEmptySub and
non-empty substitutions
makeSub(tvars, texps).

• Value constructor for composing two
substitutions combineSub(sub1, sub2).

7/92



The Substitution ADT

Both the functions makeSub(tvars, texps)
and combineSub(sub1, sub2) return a

non-empty substitution. They also enforce the
key invariant of substitutions: for any variable

T, sub(T) does not include T.

8/92



The Substitution ADT

This invariant check is performed by the
function

checkNoOccurrence(tvar, texp).
This function is a standard AST traversal of the
type expression texp looking for any instance

of the type variable tvar at any level.

9/92



The Substitution ADT

This process is called occurrence check and is
central to all unification based methods. It is a
computationally expensive component of the

algorithm.

10/92



The Substitution ADT

// Purpose: when attempting to bind tvar to te in a sub - check
// whether tvar occurs in te. Return error if
// a circular reference is found.
const checkNoOccurrence = (tvar: TVar, te: TExp): Result<true> => {

const check = (e: TExp): Result<true> =>
isTVar(e) ? ((e.var === tvar.var) ? makeFailure(...)

: makeOk(true)) :
isAtomicTExp(e) ? makeOk(true) :
isProcTExp(e) ? bind(mapResult(check, e.paramTEs),

_ => check(e.returnTE)) :
makeFailure(`Bad type expression ${e} in ${te}`);

return check(te);
};

11/92



The Substitution ADT

Similarly to environments, we define the
non-empty substitution as a linked-list of
bindings mapping variables to values. This

value type is computed using the
extendSub(sub, tvar, texp) method.

12/92



The Substitution ADT

Note that the method requires two
“complications” in addition to extending the
base-substitution with the new binding:

1. The existing right-hand-side of the base
substitutions are updated with the new
substitution

2. We perform an occurrence check on the
resulting substitution (by invoking makeSub
which includes an occurs-check).

13/92



The Substitution ADT

// Purpose: extend a substitution with one pair (v, te)
// Calls to makeSub to do the occur-check
const extendSub = (sub: Sub, v: TVar, te: TExp): Result<Sub> =>

bind(makeSub([v], [te]), (sub2: Sub) => {
const updatedTEs = map(partial(applySub, [sub2]), sub.tes);
return map(prop('var'), sub.vars).includes(v.var)

? makeSub(sub.vars, updatedTEs)
: makeSub(cons(v, sub.vars), cons(te, updatedTEs));

});

14/92



The Substitution ADT

In addition, we explicitly “compile” extended
substitutions which are the result of composing
two substitutions into a flat representation,
using the value constructor combineSub.

15/92



The Substitution ADT

Recall that substitution composition s ◦ s′ is
defined as:

• s′ is applied to the type-expressions of s,
i.e., for every variable T′ for which s′(T′) is
defined, occurrences of T′ in type
expressions in s are replaced by s′(T′).

16/92



The Substitution ADT

• A variable T in s′, for which s(T) is defined,
is removed from the domain of s′, i.e., s′(T)
is not defined on it anymore.

• The modified s′ is added to s.

17/92



The Substitution ADT

• Identity bindings, i.e., s(T) = T, are removed.
• If for some variable, (s ◦ s′)(T) includes T,
the combination fails.

18/92



The Substitution ADT

This method is implemented literally in the
combineSub(sub1, sub2) procedure -

which has a structure similar to a reduce of the
extendSub operation over all the pairs in

sub2:

19/92



The Substitution ADT

// Purpose: Returns the composition of substitutions s.t.:
// applySub(result, te) === applySub(sub2, applySub(sub1, te))
const combineSub = (sub1: Sub, sub2: Sub): Result<Sub> =>

isEmptySub(sub1) ? makeOk(sub2) :
isEmptySub(sub2) ? makeOk(sub1) :
combine(sub1, sub2.vars, sub2.tes);

const combine = (sub: Sub, vars: TVar[], tes: TExp[]): Result<Sub> =>
isEmpty(vars) ? makeOk(sub) :
bind(extendSub(sub, first(vars), first(tes)),

(extSub: Sub) => combine(extSub, rest(vars), rest(tes)));

20/92



Type Equations Module

The type equations module follows the
definition of the algorithm:

• Rename bound variables in the expression
e.

• Assign type variables to all sub-expressions.
• Construct type equations.
• Solve the equations.

21/92



Type Equations Module

Renaming of all bound variables in e is
performed in the same way as we introduced
when discussing the Substitution Model for
Operational Semantics. We do not repeat this
code here, and instead make the assumption
that in the following, all bound variables have
distinct names (the same variable name is

never used twice in different scopes).

22/92



Type Equations Module

We implement the assignment of type variables
to all sub-expressions by defining a data

structure which we call the pool which contains
a list of pairs (exp, TVar) for every node in

the expression AST.

23/92



Type Equations Module

The pool is a list of pairs which exhaustively
includes all the sub-expressions in the AST. It is
built using the function expToPool. As usual,

this function is an AST traversal method.
Whenever a node in the AST is visited, we

allocate a fresh Type Variable for it.

24/92



Type Equations Module

Pay attention to the way variable declarations
and variable references are processed when

constructing the pool:

25/92



Type Equations Module

The method extendPool(exp, pool)
generates a fresh type variable (one that was

never used before) and adds the mapping from
exp to that new type variable to the pool.

26/92



Type Equations Module

When we enter a new scope in the expression
(during its traversal), we need to keep track of

the variable declarations - and map the
variable name to the type of the variable

declaration.

27/92



Type Equations Module

Recall that when we parse an L5 expression, we
consider type annotations optional. If they are

provided, the VarDecl node stores the
declared type expression in the

VarDecl.texp field. If they are not provided
by the programmer, the parser generates a new

fresh variable and associates it to
VarDecl.texp.

28/92



Type Equations Module

When we continue the traversal of the AST, and
we later meet a VarRef node which refers to
this VarDecl node, we want to associate it to

the existing VarDecl type declaration
(whether it is provided by the programmer or

allocated by the parser).

29/92



Type Equations Module

To achieve this mechanism, when we meet a
VarDecl node, we use the procedure

extendPoolVarDecl(varDecl, pool)
which adds the pair

(VarRef(varDecl.var), varDecl.texp)
to the pool. When we later reach a VarRef in
the scope of this VarDecl, we find that the
pair (VarRef tvar) already exists in the

pool, and we do not allocate any new fresh type
variable for it.

30/92



Type Equations Module

This mechanism crucially depends on the fact
that expToPool traverses the expression AST
top-down (traverse the VarDecl before the

corresponding VarRef nodes are met) and the
expression has been renamed before so that all
VarRefs with a given name refer to the single

VarDecl with the same name.

31/92



Type Equations Module

expToPool uses the function reducePool to
accumulate the pairs (AST-node, TVar) into
the pool without repetitions. This function is a
variant of the reduce family of higher-order

functions.

32/92



Optional<T> and maybe

We use in these functions the inPool function
which checks whether an expression is already
present in the pool. In case the expression is
found, we return the associated TExp, else we

need to return a value that indicates the
expression was not found. This is a typical
situation where we have a search operator

which can fail.

33/92



Optional<T> and maybe

We adopt the standard Optional generic type
to represent this return type in a type-safe

manner. In the same way as Result represents
a call which may fail, Optional represents a
call which may either return a value or the
legitimate case of a missing value (which

should not be considered an error). The two
options are wrapped as Some<T> and None

(parallel to Ok<T> and Failure for
Result<T>).

34/92



Optional<T> and maybe

To manipulate Optional values, we use the
maybe operator which passes the

Optional<T> two possible continuations: a
method receiving a T value in case the value
was found, and one receiving no argument in
case none was found. maybe allows type-safe

composition of functions returning
Optional<T> values in the same way as bind
allows type-safe composition of Result<T>

values.
35/92



Optional<T> and maybe

We also implement bind and safe2 versions
for Optional<T> values with the same

behavior as that we adopted for Result<T>.

36/92



Optional<T> and maybe

expToPool code can be found here.

37/92

https://github.com/bguppl/interpreters/blob/master/src/L5/L5-type-equations.ts#L66


Optional<T> and maybe

The post-condition met at the end of the pool
construction is that every node in the AST is
mapped to a type variable - while preserving
scoping relations (different occurrences of the
same VarRef are all merged as a single pair
mapping the VarRef to its declared type -

which can be a non-instantiated type variable).

38/92



Equations Generation

The next step of the algorithm consists of
transforming the pool of

{e: exp, te: TVar} pairs into a set of
equations. This part of the algorithm is the one
that encapsulates the semantics of the type
system used in the programming language.

39/92



Equations Generation

The procedure poolToEquations performs
this mapping. This procedure accumulates the

transformation of all pairs
{e: exp, te: TVar} in the pool to
equations. The equation ADT is a pair

left-hand-side / right-hand-side of type
expressions (that is, each equation is encoded

as a pair
{left: TExp, right: TExp}).

40/92



Equations Generation

The heart of the typing algorithm is the
operation makeEquationsFromExp which
covers the typing rules of the programming

language. This implements the typing rules for
procedure expressions, application expressions

and atomic expressions.

41/92



Equations Generation

For example, given a pair (app-exp, TVar),
the procedure derives a type equation which
mandates that the type variable associated to
the operator of the application must be made

equal to the type expression
(T1 * ... * Tn -> TVar) where Ti is the
type variable associated to the i-th argument of

the application expression.

42/92



Equations Generation

For the base cases of primitive operators, we
reuse the procedure typeofPrim which we

defined in the type checker.

43/92



Equations Generation

See the code for makeEquationsFromExp
here.

44/92

https://github.com/bguppl/interpreters/blob/master/src/L5/L5-type-equations.ts#L110


Solving the Type Equations System

The last stage of the algorithm consists of
solving the set of equations collected by the

equations generator. The procedure
solve(equations, substitution) is a
direct implementation of the solve algorithm
presented in the last lecture. It computes the

unifier of all the equations - that is, it computes
a type substitution which when it is applied to
both sides of all the equations, makes the two

sides identical.
45/92



Solving the Type Equations System

This unifier substitution is computed
incrementally, by processing each equation in

turn.

46/92



Solving the Type Equations System

Reminder of the algorithm from last lecture:

47/92



Solving the Type Equations System

Input: A set of type equations.
Output: A type substitution or FAIL.

Initialization:
1. substitution := { }
2. Order the set of input equations

in any sequential order.
3. equation := te1 = te2, the first equation.

48/92



Solving the Type Equations System

Loop:
1. Apply the current substitution to the equation:

Let te1s := te1 o substitution
te2s := te2 o substitution

equation := te1s = te2s
2. If te1s and te2s are atomic types:

If te1s =/= te2s:
sub = FAIL

otherwise:
Do nothing.

49/92



Solving the Type Equations System

3. Without loss of generality:
If te1s = T, i.e., a type variable,

and te1s =/= te2s:
substitution := substitution o {T = te2s}

That is, apply the equation to substitution,
and add the equation to the substitution.
If the application fails (circular mapping),
substitution := FAIL.

50/92



Solving the Type Equations System

4. If te1s and te2s are composite types:
If they have the same type constructor:

Split te1s and te2s into component type
expressions, create equations for
corresponding components, and add
the new equations to the pool of equations.

otherwise:
substitution := FAIL

51/92



Solving the Type Equations System

5. Without loss of generality:
If te1s is an atomic type
and te2s is a composite type:

substitution := FAIL
6. If there is a next equation:

equation := next(equations)

Until substitution = FAIL or no more equations

Return: substitution

52/92



Solving the Type Equations System

The algorithm is implemented in the
procedures solveEquations and solve,

which can be found here.

53/92

https://github.com/bguppl/interpreters/blob/master/src/L5/L5-type-equations.ts#L164


Solving the Type Equations System

The logic of the unification is implemented in
the procedures canUnify and

splitEquation. These procedures transform
an equation of the form:

[T1 × . . .× Tn → T] = [U1 × . . .× Un → U]
into n+ 1 equations of the form:

T1 = U1, . . . ,Tn = Un, T = U

54/92



Solving the Type Equations System

The code for these procedures can be found
here.

55/92

https://github.com/bguppl/interpreters/blob/master/src/L5/L5-type-equations.ts#L208


solve Termination Argument

How do we know that the solve algorithm
terminates given a list of type expression

equations?

56/92



solve Termination Argument

The main loop of the algorithm has for state
the current list of equations and the current

substitution.

57/92



solve Termination Argument

Let us consider the effect of one iteration
through the main loop:

58/92



solve Termination Argument

Either we consume one equation from the
current equations set and produce a more

complex substitution (this happens when one
of the sides of the first equation is an atomic

type expression or a type variable).

59/92



solve Termination Argument

Or we replace one equation with multiple
equations: this happens when both sides of the
equation are composite type expressions with
compatible structure. In this case, we replace
one equation with AST trees of depth D with n
equations of depth D− 1 where n is the number

of children of the ASTs.

60/92



solve Termination Argument

In our case, composite ASTs in the type
language are ProcTExp nodes which represent

the type of procedures - with n children
elements for the arguments of the procedure

and one element for the return type.

61/92



solve Termination Argument

Or we fail the solve process when we detect an
incompatible equation.

62/92



solve Termination Argument

The argument for completion is based on the
characterization of the size of the input

equation set as a pair (D,N) where D is the
maximum height of the ASTs that appear in any

equation in the equation set and N is the
number of equations in the set.

63/92



solve Termination Argument

Each iteration in the loop changes the size to
either (D,N− 1) or (D− 1,N+ n). When D = 1,

the transition is necessarily to (1,N− 1)
because the only case where we add equations
is for composite ASTs. Hence all transitions

lead to the completion state of (1, 0).

64/92



Putting all Steps Together: inferType

Putting all the steps of the algorithm together,
we define the procedures infer and
inferType. See the code here.

65/92

https://github.com/bguppl/interpreters/blob/master/src/L5/L5-type-equations.ts#L141


Putting all Steps Together: inferType

Example:
infer("(lambda (f g) (lambda (n) (f (g n))))");
// { tag: 'Ok',
// value: '((T_6 -> T_7) * (T_3 -> T_6) -> (T_3 -> T_7))' }

Observe the usage of freshly generated type
variable names which are different each time
we invoke the procedure. This makes it difficult

to test the procedure.

66/92



Putting all Steps Together: inferType

To resolve this difficulty, we introduce the
procedure equivalentTEs in TExp.ts which

verifies that two type expressions are
equivalent up to type variable renaming. This
allows us to write tests in a deterministic

manner (see here).

67/92

https://github.com/bguppl/interpreters/blob/master/test/L5/test-helpers.ts#L21


Type Inference with Direct Unification

The implementation described above based on
type equations follows literally the type

equations algorithm. It explicitly manipulates
substitution data structures and type

equations. In addition, it constructs a map of
expression to type variables to ensure the
exhaustive traversal of the program to be

type-checked.

68/92



Type Inference with Direct Unification

We present here an optimized version of this
algorithm which relies on a slightly modified

representation of the type variable data
structure. Using this new data structure for

type variables, we implement exactly the same
algorithm but avoid creating explicit data

structures for the pool, the equations and the
substitutions.

69/92



Type Inference with Direct Unification

This leads to a more memory-efficient
implementation, which also turns out to be
more time efficient, as less traversals of the
data structures are required, and operations
performed eagerly in the type equations
method are turned into lazy operations.

70/92



Type Variable with One-way Assignment

The extension to the TVar data type we
introduce is implemented as follows:

71/92



Type Variable with One-way Assignment

// TVar: Type Variable with support for
// dereferencing (TVar -> TVar)
type TVar = {

tag: "TVar";
var: string;
contents: Box<undefined | TExp>;

};
const isEmptyTVar = (x: any): x is TVar =>

(x.tag === "TVar") && unbox(x.contents) === undefined;
const makeTVar = (v: string): TVar =>

({tag: "TVar", var: v, contents: makeBox(undefined)});
const isTVar = (x: any): x is TVar =>

x.tag === "TVar";
const eqTVar = (tv1: TVar, tv2: TVar): boolean =>

tv1.var === tv2.var;

72/92



Type Variable with One-way Assignment

In addition to the name of the type variable, we
associate a boxed value, initialized to

undefined. We use this new field in the TVar
datatype to associate the TVar to another type
expression, when we derive a constraint that
the variable must be bound to another type
expression as part of the type inference

process.

73/92



Type Variable with One-way Assignment

We extend the TVar data type with the
following methods:

const tvarContents = (tv: TVar): undefined | TExp =>
unbox(tv.contents);

export const tvarSetContents = (tv: TVar, val: TExp): void =>
setBox(tv.contents, val);

export const tvarIsNonEmpty = (tv: TVar): boolean =>
tvarContents(tv) !== undefined;

74/92



Type Variable with One-way Assignment

The assignment managed by TVar is one-way -
we can only assign a value to an empty type

variable.

75/92



Type Variable with One-way Assignment

In many occurrences, we will bind a TVar to
another TVar. When this is the case, we are
interested in accessing the type expression to
which the referenced TVar refers. That is, we
create a graph of TVar references to other
TVars which eventually lead to non-TVar
expressions. We want to follow the path of

references from any TVar to a non-TVar value
(which may be empty).

76/92



Type Variable with One-way Assignment

The method tvarDeref performs this graph
traversal:

const tvarDeref = (te: TExp): TExp => {
if (! isTVar(te)) return te;
const contents = tvarContents(te);
if (contents === undefined)

return te;
else if (isTVar(contents))

return tvarDeref(contents);
else

return contents;
};

77/92



Unification-based CheckTvarEqualType

Using the one-way assignment TVar data
structure, we return to the procedure

checkEqualType which we defined in the
Type Checker implementation. The original

implementation applied the invariance check
and verified that two type expressions are
identical (using the equals predicate from
Ramda). When they were, the type checker

proceeded - otherwise the type checking failed.

78/92



Unification-based CheckTvarEqualType

In the case of the type inference, we replace
this type equal test with a different procedure,
which instead of testing that two types are

equal, attempts to make them equal when they
contain type variables. The way two type

expressions are made equal is by unifying them
- that is, finding a substitution which when
applied to both sides makes them equal.

79/92



Unification-based CheckTvarEqualType

But instead of representing the substitution as
an explicit data structure (the Sub type we
defined in L5-substitution-adt.ts), we
encode the substitution bindings within the
TVar data structure. When tvar1 is bound to

a type expression s(tvar1), we invoke
tvarSetContents(tvar1, te).

80/92



Unification-based CheckTvarEqualType

The following procedure effectively computes
the MGU (most general unifier) in-place given
two expressions te1 and te2 which may contain

type variables.

81/92

https://github.com/bguppl/interpreters/blob/master/src/L5/L5-typeinference.ts#L16


Unification-based CheckTvarEqualType

In exactly the same manner as we had to deal
with the occurs-check case in the substitution
data type, we must also avoid creating circular
references in the graph of TVar references.

This is enforced in the
checkTVarEqualTypes procedure which

binds a TVar to a value - and makes sure the
reference type expression does not include a

reference to TVar.

82/92

https://github.com/bguppl/interpreters/blob/master/src/L5/L5-typeinference.ts#L44


Type Inference Algorithm

Surprisingly, the type inference algorithm is
exactly the same code as the Type Checker -

except for the transformation of the procedure
checkEqualType from a test of equality to the
unification building version presented above.

83/92



Type Inference Algorithm

The program that we obtain is in fact an
implementation of the type equation algorithm

- with the following transformations:

84/92



Type Inference Algorithm

There is no explicit pool representation -
instead, we pre-allocate type variables in all
possible VarDecl and procedure return

positions as part of the expression parsing (in
parse).

85/92



Type Inference Algorithm

Application nodes and procedure nodes in the
program AST are not explicitly annotated with
type variables - but the type checking algorithm

enforces exhaustive traversal of the AST in
depth-first order. Each time an application or

procedure node is encountered, the
corresponding type equation is verified, and
solved in place by invoking checkEqualType

eagerly.

86/92



Type Inference Algorithm

Note that when we invoke checkEqualType -
the types may not yet be known, and an

expression may still be attached to an unbound
TVar. This happens for example when we infer

types for the expression
((lambda (x) x) 1) – when the operator
component of this application is analyzed -

there is not sufficient information to derive the
type of the parameter x.

87/92



Type Inference Algorithm

Later, when the typing rule of the application
syntactic construct is applied (the top level

node in the AST), the TVar associated to x will
be bound to the type expression of the numeric
atomic value. This will propagate the inferred
information that x is a NumTExp type from the

application to the procedure expression.

88/92



Type Inference Algorithm

This propagation of information was not
necessary in the case of the type checking

algorithm - because we could rely on the fact
that all variable references (VarRef) are

explicitly typed.

89/92



Type Inference Algorithm

We do not explicitly represent substitutions,
instead we rely on the graph of TVar
references as a representation of the

substitution object.

90/92



Type Inference Algorithm

We do not need the explicit renaming of the
program as we can rely on the TEnv

mechanism to capture scoping relations.

91/92



Type Inference Algorithm

The implementation of unification through
one-way variable assignment is a powerful
technique, which we will revisit in Chapter 5

when we survey Logic Programming.

92/92


