
Principles of Programming Languages
Introduction & Chapter 1: Practical Functional
Programming

1/110



Table of Contents

Introduction: What This Course is About

Chapter 1: Practical Functional Programming

Programming Paradigms

Functional Programming

Advantages of FP

Using JavaScript to Illustate FP

2/110



Introduction: What This Course is
About



In One Sentence

This course studies principles
underlying the design of programming

languages.

3/110



Main Objectives

1. Learning principles of programming languages:
• Elements of programming languages
• Abstraction means
• Formal definition
• Concrete and abstract syntax, operational semantics
• program correctness - type checking and type inference
systems

Key concepts in describing programming languages will
emerge such as substitution, scope, reduction and
structural induction. These tools will help us draft first
proofs of correctness for programs and program
transformations

4/110



Main Objectives

2. Describing program execution by studying evaluators:
interpreters, program transformers and compilers.

3. Comparing programming paradigms: Functional
programming, Logic programming and Imperative
programming.

4. Learning principles of program design: Abstraction,
contracts, modular architecture, testing.

5/110



Main Objectives

2. Describing program execution by studying evaluators:
interpreters, program transformers and compilers.

3. Comparing programming paradigms: Functional
programming, Logic programming and Imperative
programming.

4. Learning principles of program design: Abstraction,
contracts, modular architecture, testing.

5/110



Main Objectives

2. Describing program execution by studying evaluators:
interpreters, program transformers and compilers.

3. Comparing programming paradigms: Functional
programming, Logic programming and Imperative
programming.

4. Learning principles of program design: Abstraction,
contracts, modular architecture, testing.

5/110



Main Objectives

The unifying underlying objective is to
understand how programming languages work,
why they are designed the way they are, and

what good programming practices they
encourage.

6/110



Main Objectives

Understanding these principles of
programming languages will help us learn new
languages, compare existing languages, choose
the right language for a given task, and build

our own language when needed.

7/110



How Will We Learn?

The course is a mixture of theory and practice.
Theoretical topics are supported by

implemented software, and course assignments
involve programming.

8/110



Meta-programming

Describing and developing software tools that
manipulate programs - parse them, evaluate
them, transform them, translate from one
language to another; reason about code to
prove that it has some desirable properties
(related to correctness or performance) in a

predictable manner.

9/110



Meta-programming

Specifically, we will learn how to develop
interpreters for a functional language, and a
program transformer which infers types of an
untyped program and rewrites it into a typed
form. We will also develop an interpreter for a

logic programming language.

10/110



Good Programming Practices

Encourage good programming practices and
understand their importance through

examples, and by applying them to develop
meta-programming tools. The parsers,

interpreters and transformers of programs we
will develop will be practical examples of good

programming.

11/110



Let’s Begin

Now that we know what we are getting
ourselves into, let’s begin!

12/110



Chapter 1: Practical Functional
Programming



Motivation

In this chapter, we introduce the functional
programming paradigm and explain its benefits.

13/110



Motivation

We illustrate the recommended practices with
the TypeScript programming language - which
is an extension of JavaScript which supports an
advanced type system. We introduce the notion

of type systems, type checking and type
inference on practical examples. We illustrate

through examples closures, higher order
functions, currying, and recursive programming.

14/110



Chapter 1: Practical Functional
Programming

Programming Paradigms



Definition

A programming paradigm is a way of
programming - that recommends “preferred

practices” and discourages or makes
impossible “risky practice.”

15/110



Imperative

Control flow is an explicit sequence of
commands.

10 INPUT "What is your name: "; U$
20 PRINT "Hello "; U$
30 INPUT "How many stars do you want: "; N
40 S$ = ""
50 FOR I = 1 TO N
60 S$ = S$ + "*"
70 NEXT I
80 PRINT S$
90 INPUT "Do you want more stars? "; A$
100 IF LEN(A$) = 0 THEN GOTO 90
110 A$ = LEFT$(A$, 1)
120 IF A$ = "Y" OR A$ = "y" THEN GOTO 30
130 PRINT "Goodbye "; U$
140 END

16/110



Declarative

Programs state the result you want, not how to
get it - leaves flexibility to the language runtime

to achieve the goal in optimized ways.

SELECT T1.country_name
FROM countries as T1 JOIN continents
AS T2 ON T1.continent = T2.cont_id
JOIN car_makers as T3 ON
T1.country_id = T3.country
WHERE T2.continent = 'Europe'
GROUP BY T1.country_name
HAVING COUNT(*) >= 3

17/110



Structured

Programs have clean, goto-free, nested control
structures - arose in reaction to “goto hell”

spaghetti code.

18/110



Procedural

Imperative programming organized around
hierarchies of nested procedure calls.

int main(int argc, char *argv[]) {
int x = 5;

int result1 = doStepOne(x);
double result2 = doStepTwo(result1);
printf("The result is %.2f", result2);

return 0;
}

19/110



Functional

Computation proceeds by (nested) function
calls that avoid any global state mutation and
through the definition of function composition.

(define sum-even-squares
(foldl + 0

(filter even?
(map sqr '(1 2 3 4 5)))))

20/110



Object-oriented

Computation is effected by sending messages
to objects; objects encapsulate state and

exhibit behavior.
public class Person {
public Person(String name, int age) {

this.name = name;
this.age = age;

}

public void sayHello() {
System.out.println("Hello, my name is " + name);

}
}

21/110



Event-driven

Control flow is determined by asynchronous
actions in reaction to events.

document.addEventListener("click", e => {
console.log(`I was clicked at (${e.x}, ${e.y})`);

});

22/110



Logic

Programmer specifies a set of facts and rules,
and an engine infers the answers to questions.

male(ben).
female(dor).
teacher(ben, ppl).
teacher(dor, ppl).

?- teacher(X, ppl), female(X).
X = dor.

23/110



Relation Between Paradigms and Languages

Programming Languages, by the way they are
designed, make some programming paradigms
easy to follow. When this is the case, we say
that the language belongs to the paradigm.

For example, Scheme is a functional
programming language.

24/110



Relation Between Paradigms and Languages

In other words, programming paradigms are a
way to classify programming languages (a

paradigm is a family of programming languages
that have similar properties)

25/110



Relation Between Paradigms and Languages

A given programming language can support
more than one programming paradigm. For
example, C++ and Java are multi-paradigm

languages, which support the Object-oriented
paradigm, the Procedural paradigm, and in

recent versions some aspect of the Functional
paradigm.

26/110



Dimensions of Variability Across Programming Paradigms

Paradigms are distinguished by programming
practices they encourage and forbid (or make
difficult). Historically, new paradigms emerge in

reaction to problems faced over time by
standard practitioners. The motivating forces
and programming practices that are concerned

by programming paradigms include:

27/110



Dimensions of Variability Across Programming Paradigms

• Control Flow: how execution flows within the program
(sequence and branches, in concurrent threads, in
reactive manner, declarative).

• Code Organization: how code is organized into a hierarchy
of units (expressions, functions, modules, packages) and
how these units are organized.

• Performance: how code can be run fast, use less
resources (RAM, disk, network), behave better (responsive,
scalable) at runtime.

28/110



Dimensions of Variability Across Programming Paradigms

• Coupling and Reuse: how easily code can be reused in
different contexts.

• Testing: how easy it is to test and verify that code is
correct.

• Syntax: how natural, brief, readable is the expression of
code given the syntax of the language. Can the syntax of
language be extended by the programmer.

• Domain: to which application domain is the paradigm
best applicable (server-side processing, database, GUI
front-end, control system).

29/110



Chapter 1: Practical Functional
Programming

Functional Programming



Introduction

We will start our investigation of programming
language principles by studying a specific

paradigm - called Functional Programming (FP).
We will first illustrate practical applications of

this paradigm using JavaScript.

30/110



Introduction

Functional Programming (FP) is a paradigm of
programming that is most similar to evaluation

of expressions in mathematics.

A program is viewed as an expression, which is
evaluated by successive applications of

functions to their arguments, and substitution
of the result for the functional expression.

Its origin is in the lambda calculus invented by
Church in the 1930s.

31/110



Expressions and Values

No state!

Computation is not a sequence of statements
that modify state (variables, DB, console), but a

sequence of expressions that result from
successive evaluation of sub-expressions.

32/110



Expressions and Values

No state!
Computation is not a sequence of statements
that modify state (variables, DB, console), but a

sequence of expressions that result from
successive evaluation of sub-expressions.

32/110



Expressions and Values

For example:

(2 * 3) + (4 * 5);

33/110



Expressions and Values

For example:

6 + (4 * 5);

34/110



Expressions and Values

For example:

6 + 20;

35/110



Expressions and Values

For example:

26;

36/110



Expressions and Values

Similarly, when we evaluate function calls.
Given the following functions:

function f(x) { return x * x; }
function g(y) { return y + y; }

37/110



Expressions and Values

f(2) + g(3);

38/110



Expressions and Values

(2 * 2) + g(3);

39/110



Expressions and Values

4 + g(3);

40/110



Expressions and Values

4 + (3 + 3);

41/110



Expressions and Values

4 + 6;

42/110



Expressions and Values

10;

43/110



No Side Effects

Computation in functional programming has no
side-effects. In the examples above, we did not
ask the program to “print” a result - instead we
evaluated an expression (which is the program)
and the interpreter returned the value of the
expression (which conveniently got printed at

the end of the evaluation).

44/110



No Side Effects

The only result of a functional computation is
the computed value, and there are no

additional changes that can take place during
computation. Functional programming does not
support variable assignment or state mutation.

45/110



No Side Effects

When external side-effects are required
(sending data to an output device, to disk, to
the network), FP tends to delay the side-effect

and push it outside of the computation.

46/110



No Side Effects

Imperative Programming uses statements
which modify the state of the system, while

Functional Programming evaluates expressions
to return values.

47/110



Higher Order Functions

FP requires that functions be first-class, which
means that they are treated like any other

values:

• Functions can be passed as arguments to
other functions

• Functions can be returned as a result of a
function

• Functions can be anonymous

48/110



Higher Order Functions

For example:

import { map } from "ramda";

function square(x) { return x * x; }

let a = [1, 2, 3];
let b = map(square, a);
console.log(b);
// ==> [1, 4, 9]

49/110



Higher Order Functions

The function map receives a function as a
parameter and an array, and applies the

function to each element in the array, returning
a new array.

Sometimes, the functions passed in as
arguments are very simple, and thus don’t need

a name, so we can do:

map(x => x * x * x, a);

50/110



Higher Order Functions

An unnamed function is called a

lambda expression.

51/110



Chapter 1: Practical Functional
Programming

Advantages of FP



Verification

The way the program is executed is closely
related to the way we prove and justify the

correctness of a program mathematically. Proof
by mathematical induction is closely related to

the programming technique of recursion.
Because functions have no side-effects, they

behave like mathematical functions - each time
they are called with the same parameters, they

return the same values (this is called
determinism).

52/110



Parallelism

Since expressions have no side-effects, it is
natural to use parallel evaluation: the values of

independent sub-expressions may be
determined simultaneously, without fear of
interference or conflict, and the final result is
not affected by evaluation order. This enables

programs to exploit available parallelism
without fear of disrupting their correctness.

53/110



Abstraction

FP stresses data-centric computation, with
operations that act on compound data
structures as a whole, rather than via

item-by-item processing. More generally, FP
emphasizes the isolation of abstract types that
clearly separate implementation from interface.

Types are used to express and enforce
abstraction boundaries, greatly enhancing
maintainability of programs, and facilitating

team development.
54/110



Chapter 1: Practical Functional
Programming

Using JavaScript to Illustate FP



From Imperative to Procedural

To illustrate the differences among
programming paradigms, we will demonstrate
multiple iterations over a program that fulfills a
simple requirement: We are asked to write a
program to display a number value squared.

55/110



From Imperative to Procedural

We will then study how the program must be
adapted when we introduce slight

modifications of the requirement. All the
examples are given in TypeScript.

56/110



From Imperative to Procedural

We first write a single command that performs
as requested:

console.log(0 * 0);

57/110



From Imperative to Procedural

The basic programming tool we used is a
command, also called a statement.

58/110



From Imperative to Procedural

Oh, no! The requirement has changed, and we
are now requested to print the squares of the

numbers 0 to 4.

console.log(0 * 0);
console.log(1 * 1);
console.log(2 * 2);
console.log(3 * 3);
console.log(4 * 4);

59/110



Structured Programming

This is no good!

• Code repetition
• Cannot be easily adapted to new values of
the parameters

• The nature of the task is not reflected in the
structure of the code

What can we do?

60/110



Structured Programming

• Use variables to capture the parameters, so
that the same program can be applied to
different values.

• Use an array to separate the data from the
task.

• Use a loop control flow structure to express
the fact that the same task is repeated
multiple times on different values.

61/110



Structured Programming

let numbers = [0, 1, 2, 3, 4];
for (let i = 0; i < numbers.length; i++) {
console.log(numbers[i] * numbers[i]);

}

62/110



Structured Programming

The key programming construct that we have
introduced in the programming language is the

for-loop. We also introduced variables
(numbers and i).

What if we want to print the squares of the
numbers 8 to 12? We have to copy the program

and change the numbers array.

63/110



Procedural Programming

Well, we still need to copy our program for
every new set of parameters.

Also, the coupling between the code and the
parameters is accidental, meaning that we

don’t know whether numbers and i apply only
to our code snippet, or to other snippets of

code as well.

64/110



Procedural Programming

Procedural programming improves on these
weaknesses by introducing:

• Procedures: commands with a well defined
interface of input parameters / output
parameters and expected behavior.

• Local variables: variables which are defined
only within the scope of the procedure.

65/110



Procedural Programming

function printSquares(numbers) {
for (let i = 0; i < numbers.length; i++) {
console.log(numbers[i] * numbers[i]);

}
}

66/110



Procedural Programming

The programming constructs we introduced are
functions and let which defines local variables

for a block of statements.

67/110



Procedural Programming

Procedures (functions) have an interface:

• Name
• Input parameters
• Return value

The name of a procedure forms an abstraction.
It hides away implementation details from the

client of the procedure.

68/110



Procedural Programming

Consider the following change in requirements:
we now want to print the cube of the numbers

rather than their square.

69/110



Procedural Programming

function cube(x) {
return Math.pow(x, 3);

}

function printCubes(numbers) {
for (let i = 0; i < numbers.length; i++) {
console.log(cube(numbers[i]));

}
}

70/110



Procedural Programming

We see a first case of procedural abstraction in
this example: the procedure printCubes

iterates over an array, and applies the function
cube on each element. The client of the
printCubes procedure does not directly

invoke the cube function - it is encapsulated
inside the printCubes procedure.

71/110



Testing Requirements

We want to provide the capability to verify that
a procedure is correct according to its

specification.

Problem: The function printCubes above is
difficult to test because it only prints to the

console, not returning any output.

Solution: Refactor!

72/110



Testing Requirements

We want to provide the capability to verify that
a procedure is correct according to its

specification.

Problem: The function printCubes above is
difficult to test because it only prints to the

console, not returning any output.

Solution: Refactor!

72/110



Testing Requirements

We want to provide the capability to verify that
a procedure is correct according to its

specification.

Problem: The function printCubes above is
difficult to test because it only prints to the

console, not returning any output.

Solution: Refactor!

72/110



Testing Requirements

function cubes(numbers) {
for (let i = 0; i < numbers.length; i++) {

numbers[i] = cube(numbers[i]);
}

}

function printArray(a) {
for (let i = 0; i < a.length; i++) {

console.log(a[i]);
}

}

function printCubes2(numbers) {
cubes(numbers);
printArray(numbers);

}

73/110



Testing Requirements

Now, let us write a unit test using the Mocha
and Chai libraries:

74/110



Testing Requirements

import { expect } from "chai";
import { cubes } from "./lecture1";

describe("cubes", () => {
it("cubes the elements of an array", () => {

let numbers = [1, 2, 3];
cubes(numbers);
expect(numbers).to.deep.equal([1, 8, 27]);

});
});

75/110



Testing Requirements

76/110



Problems with the Procedural Paradigm

At this point, we have a nice version of our
program:

• It is organized in layers of abstraction
• The procedures that operate over arrays use
a structured for-loop

• It is testable

77/110



Problems with the Procedural Paradigm

These good features were encouraged by
facilities of the programming language we use:

• It is easy to define arrays, give them names,
initialize them with values, pass them as
parameters, access their elements.

• It is easy to define functions.

78/110



Problems with the Procedural Paradigm

• Functions can invoke other functions when
knowing their name and the parameters
they expect.

• It is easy to test functions using facilities
like Mocha and Chai.

79/110



Problems with the Procedural Paradigm

In other words, the language encouraged us to
organize our program in a good manner.

80/110



Problems with the Procedural Paradigm

The procedural paradigm does have its
drawbacks:

• Procedural programming encourages shared
state with mutation which makes
concurrency difficult.

• Procedural programming commits early to a
step by step way to implement operations
which prevents performance optimizations.

81/110



Problems with the Procedural Paradigm

• Procedural programming makes it difficult
to create functional abstractions that are
highly reusable.

• Procedural programming makes it difficult
to reason about code because of shared
state and mutation.

82/110



Concurrency

Assume we run the procedure squares in two
concurrent threads on the same array

numbers.
function squares(numbers) {

for (let i = 0; i < numbers.length; i++) {
numbers[i] = numbers[i] * numbers[i];

}
}

let n89 = [8, 9];

// In Thread 1:
squares(n89);
// In Thread 2:
squares(n89); 83/110



Concurrency

If the 2 threads are interleaved in an
unfortunate sequence of events - the following

scenario can occur:
Thread 1 Thread 2

numbers[0] = 64
numbers[1] = 81 numbers[0] = 64

numbers[1] = 6561

84/110



Concurrency

So how can we handle this problem?

• Option 1: enforce mutual exclusion using
locks

• Option 2: immutable data structures

85/110



Declarative vs. Procedural

Consider the loop control structure as we
defined it. It involves a counter variable i that
is defined for the scope of the loop, initialized
to 0, and mutated from 0 to the length of the
array over which we iterate (with the i++

operator). This is one way to iterate over the
elements of an array - which is described step
by step in a procedural way, as a precise recipe.

86/110



Declarative vs. Procedural

In contrast, in FP, one would prefer to use a
more abstract operation, called map, which
consists of applying a function over all the

elements of a container, and returning a new
container that contains the results.

function cubes(numbers) {
return numbers.map(cube);

}

87/110



Declarative vs. Procedural

This version of the function does not change its
parameter - instead, it returns a new array
which contains the result. The result has the
same length as the parameter. Note also that
the operation map does not require a counter
like i to iterate over the array. There is no

mutation.

88/110



Declarative vs. Procedural

An alternative way to express the same FP tool
is to use the map function instead of the array
map method. This is illustrated in this example,
using the Ramda package which provides a

large set of FP facilities for JavaScript:

import { map } from "ramda";

function cubes(numbers) {
return map(cube, numbers);

}
89/110



Functional Abstractions

Let’s remember our procedural solution to our
cubing requirement:

function cubes(numbers) {
for (let i = 0; i < numbers.length; i++) {
numbers[i] = cube(numbers[i]);

}
}

function printArray(a) {
for (let i = 0; i < a.length; i++) {
console.log(a[i]);

}
}

function printCubes2(numbers) {
cubes(numbers);
printArray(numbers);

} 90/110



Functional Abstractions

Surprise, surprise, new requirements! Compute
the exponential value of all elements in a list of

numbers (instead of their cube).

If we could only pass a function as a
parameter...

91/110



Functional Abstractions

map to the rescue!

function exponents(numbers) {
return numbers.map(Math.exp);

}

92/110



Functional Abstractions

Side-note on syntax: if we want to use an
anonymous function, we can use “fat arrow

notation”:
function squares(numbers) {
return numbers.map(x => x * x);

}

or the function syntax (but then we need to use
the return keyword):

function squares(numbers) {
return numbers.map(function (x) { return x * x; });

}

93/110



Functional Abstractions

Consider the following requirement: we want to
apply a function to a list of numbers, and then

keep only the values that are even.

94/110



Functional Abstractions

Our solution might look like this:
function isEven(x) {
return x % 2 === 0;

}

function mapAndKeepEven(f, a) {
let fa = a.map(f);
let res = [];
for (let i = 0; i < fa.length; i++) {

if (isEven(fa[i])) {
res.push(fa[i]);

}
}
return res;

}

95/110



Functional Abstractions

It can’t be! Mutation? Looping? Not in FP!

Introducing filter: given a predicate and a
list, return a new list with all elements that

satisfy the predicate. Example:

[1, 2, 3, 4, 5, 6].filter(isEven)
// ==> [2, 4, 6]

96/110



Functional Abstractions

So back to mapAndKeepEven, we can rewrite it
as

function mapAndKeepEven(f, a) {
return a.map(f).filter(isEven);

}

97/110



Functional Abstractions

But why stop here? We can abstract isEven
out, and take the predicate as a parameter,

giving us mapAndFilter:

function mapAndFilter(f, pred, a) {
return a.map(f).filter(pred);

}

98/110



Functional Abstractions

Using Ramda, we will compose the functions,
instead of method chain them:

import { map, filter } from "ramda";

function mapAndFilter(f, pred, a) {
return filter(pred, map(f, a));

}
This leads us to another important pattern in

FP: composition.
99/110



Functional Abstractions

Ramda offers a function called compose, which
takes functions f1, . . . , fn and returns a new

function, which is their composition
f1 ◦ f2 ◦ . . . ◦ fn. For example:

import { map, filter, compose } from "ramda";

compose(filter(isEven), map(cube))([0, 1, 2, 3, 4]);
// ==> [0, 8, 64]

100/110



Functional Abstractions

So what have we seen so far?

• Functions can receive functions as
parameters - including anonymous
functions (lambda). For example, map,
filter and compose receive functions as
parameters.

101/110



Functional Abstractions

So what have we seen so far?

• Functions can return functions as a
computed value. For example, compose
returns a new function as a computed value.

102/110



Functional Abstractions

So what have we seen so far?

• Ramda functions that receive two
arguments, such as map and filter
behave interestingly when they are passed a
single argument - this is called currying.
This behavior makes it much easier to
compose functions.

103/110



Functional Abstractions

All of these features together encourage a style
of programming in which new functions are

built incrementally from smaller functions. This
method is the basis of what we call functional
abstractions - such as the family of operators

map and filter (and more we will get to
discover) or the operator compose.

104/110



Reasoning About Code

Suppose we implemented evenCubes as
const evenCubes = compose(filter(isEven), map(cube));

And along comes a friendly consultant that
suggests we can optimize this function by first

filtering, then cubing:
const evenCubes = compose(map(cube), filter(isEven));

Are these two functions equivalent?

105/110



Reasoning About Code

Definition - Function Equivalence
Two functions f,g are equivalent (which we will write f ≡ g) if
Domainf = Domaing, Rangef = Rangeg and
∀x ∈ Domainf, f(x) = g(x).

106/110



Reasoning About Code

This definition holds for the mathematical
sense, but computation can throw an exception,
or not terminate. Let’s modify our definition to

support that:

107/110



Reasoning About Code

Definition - Function Equivalence
Two functions f,g are equivalent (which we will write f ≡ g) if
Domainf = Domaing, Rangef = Rangeg and ∀x ∈ Domainf,
either:

• f(x) = g(x)
• If f throws an exception, so does g
• If f does not terminate, so does g

108/110



Reasoning About Code

Definition - Referential Transparency
The value of an expression depends only on its
sub-expressions, and if you substitute a sub-expression in an
expression by another expression that is equivalent, then the
resulting expression is equivalent to the original.

109/110



Reasoning About Code

Now, let’s check our consultant’s suggestion.
Let f = compose(filter(isEven),map(cube)) and

g = compose(map(cube), filter(isEven)).

110/110


	Introduction: What This Course is About
	Chapter 1: Practical Functional Programming
	Programming Paradigms
	Functional Programming
	Advantages of FP
	Using JavaScript to Illustate FP


