
Principles of Programming Languages
Chapter 2: Syntax and Semantics with Scheme
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Interpreters

In this chapter, we define a small but complete
programming language. We demonstrate what

are the elements necessary to define a
programming language. We first present these
elements informally - to define a subset of the
Scheme language. This language is a simple

functional language.
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Interpreters

We then move on to define the elements
formally in the form of:

• The syntax of the language (defining the set
of expressions which belong to the
language)

• The operational semantics of the language
(defining how to map any expression in the
language to a value in a recursive manner).
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Interpreters

We implement these formal definitions into
concrete programs - which together form an

interpreter of the language.
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Interpreters

This chapter brings us face to face with the
most fundamental idea in computer

programming: The interpreter for a computer
language is just another program.
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Interpreters

Interpreters are interesting because:

• They clarify what programs do when they
are executed

• They illustrate how to build a wide class of
programs which transform complex data
from one form into another based on
syntactic structure.

6/113



Object Language vs. Meta Language

We use interpreters to implement the formal
definitions of a programming language.
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Object Language vs. Meta Language

The interpreter itself is written in a
programming language, and it defines a

programming language. To distinguish between
these two programming roles, we use the

following terminology:

• The language we define and describe is
called the object language.

• The language we use to implement the
interpreter is called the meta language.
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Scheme as an Object Language

We introduce a subset of Scheme to illustrate
how to specify a programming language and
how to implement a full interpreter because
Scheme is a small language and a simple
language. Yet, Scheme is an expressive

language - it is Turing complete, and because it
follows the functional programming paradigm,
it allows the definition of powerful functional

abstractions which make programming
productive.
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Scheme as an Object Language

All of these elements stand in contrast with
JavaScript - which has evolved into a large

language with many primitives, a very complex
syntax, and because it is a multi-paradigm
language - supporting FP, OOP, procedural
programming and more - JavaScript has a

complex evaluation semantics.
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Scheme as an Object Language

We thus select to describe a small and simple
but full language - a subset of Scheme - as the

object language of this course.
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TypeScript as a Meta Language

We select to use a subset of TypeScript used as
a Functional Language to implement the

interpreter.
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TypeScript as a Meta Language

One of the advantages of this decision is that
we exploit the TypeScript type system to
encode the objects manipulated in the

interpreter - abstract syntax trees and values. If
the algorithm of the operational semantics is
well understood, it can be implemented as a

pure functional model in a code that is
surprisingly short and elegant - and ported to

any functional language.
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TypeScript as a Meta Language

Let us engage thus in developing a
programming language bottom up, starting

from small blocks and building up into a fuller
version of a functional programming language.
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Elements of a Programming Language

How do we specify a programming language?
What are the elements that together define a

programming language?
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Elements of a Programming Language

The key elements are:
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Elements of a Programming Language

1. Primitives: expressions whose evaluation is
built-in in the interpreter and which are not
explained by the semantics of the language.
These include primitive operations (for
example, arithmetic operations on number
or comparison operators) and primitive
literal values (for examples, numbers or
boolean values).
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Elements of a Programming Language

2. Combination means: ways to create
compound expressions and compound
values from simpler ones.
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Elements of a Programming Language

3. Abstraction means: ways to manipulate
compound objects (expressions or data
values) as standalone units by giving them
simple names.
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Elements of a Programming Language

The language definition is structured in two
aspects:

1. Expressions are the words and sentences of
the language.

2. Values are the results of the computation of
expressions according to the evaluation
rules of the language. Values belong to the
semantic domain of the language.
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Elements of a Programming Language

To describe our object programming language,
we first present all the types of expressions in
the language (this is called the syntax of the

language) on the one hand, and all the possible
values that can be computed by the language
on the other. The syntax is the input to the
interpreter, the values are the output of the

interpreter.
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Elements of a Programming Language

We will introduce the syntax and semantics of
the Scheme subset in several iterations -

starting from the simplest forms of expressions,
then describing the rules to evaluate their

value, then introducing more complex forms of
expressions and their evaluation rules.

22/113



Expressions

We distinguish:

• Atomic expressions
• Compound expressions
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Atomic Expressions

The following are the types of atomic
expressions in Scheme:

• Literal numbers – 1, -1, 1.2
• Literal booleans – #t, #f
• Primitive procedures – +, -, *, /, >, <, =
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Compound Expressions

The only syntactic form used to combine
expressions into complex expressions in

Scheme is to arrange them into parentheses:

(+ 45 78) ;; => 123
(- 56 9) ;; => 47
(* 6 50) ;; => 300
(/ 25 5) ;; => 5
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Compound Expressions

These expressions are called forms. Their
structure is to always refer to the leftmost

sub-expression of the form as an operator and
the rest of the sub-expressions as operands.
Scheme compound expressions are always

written in prefix notation.
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Compound Expressions

Forms can be nested recursively:

(+ (* 3 15)
(- 9 2)) ;; => 52
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Compound Expressions

Expressions are evaluated by the interpreter
and return a value. In Scheme, there are only
expressions in the language. This is in contrast
to JavaScript which contains expressions and
statements (syntactic elements which, when
evaluated, do not return a value, but simply

execute a command).
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Variables and Values

The programming language provides means to
name objects. This is a fundamental form of
abstraction: using a simple name instead of

using a complex value or a complex expression.
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Variables and Values

In Scheme, define is used to bind a name the
value of an expression.

(define size 6)
(* 2 size) ;; => 12

size in this context is called a variable. The
relation between a variable and the value it

denotes is called a binding.
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Variables and Values

Variables can be used as atomic expressions.
They are evaluated to the value to which they

were bound using define.
define is a form of abstraction because it

allows the programmer to use names
(variables) instead of complex operations.
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Variables and Values

In the syntax of a define operation, define is
a special operator - it indicates that a special
operation must be performed by the interpreter

to evaluate the
(define <var> <expression>)

form.
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Variables and Values

The result of evaluating a define form is that
the interpreter remembers that the variable is

now bound to a value.

To evaluate the form
(define <var> <exp>):

1. Let val = Evaluate(<exp>)
2. Add the binding < <var>, val >

to the global environment

33/113



Variables and Values

The global environment is a function which
maps variable names to values.
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Expression Types and Evaluation Rules - Round 1

We have now presented different expression
types with the corresponding evaluation rules
for each type of expression. Let us call this
language L1 and summarize the rules to
evaluate all of the expression types in L1.

We also summarize the set of all possible
values computed by L1.
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Expression Types

All the expression types presented so far are:
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Atomic Expressions

• number literal expression – 0, 1, 2, ...
• boolean literal expression – #t and #f
• primitive operations expressions – +, -, ...
• variable expressions – x, area, ...
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Compound Expressions

• Special compound expressions:
(define <var> <exp>)

• Non-special compound expressions:
(exp0 ... expn) where each expi is
any expression that is not define.
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Expression Types

This inductive definition corresponds to the set
Expression of all possible expressions in the
language. (The definition is inductive because
we use the term expression to define what are

compound expressions.)
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Evaluation Rules for Expressions

We define the function
evaluate : Expression→ Value in an inductive

manner:
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Evaluation of Atomic Expressions

1. Variables are evaluated by looking up their
value in the global environment.

2. Primitive atomic expressions evaluate to
their pre-defined denoted value.
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Evaluation of Compound Special Forms

For each special form, a special evaluation rule
exists. The special form

(define <var> <exp>)
is evaluated according to this rule:

1. Let val = evaluate(<exp>)
2. Add the binding < <var>, val > to the

global environment.
3. The form returns a special void value.
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Evaluation of Compound Special Forms

Note that in this rule, the sub-expression
<var> is not evaluated. We have only

introduced one special form define so far -
we will introduce more later.

43/113



Evaluation of Compound Non-special Forms

All compound forms are of the form
(exp0 ... expn).

1. Let:
val0 = evaluate(exp0)
...
valn = evaluate(expn)

2. Apply the procedure val0 to the values
(val1 ... valn).
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Computed Values

Looking at all the evaluation rules, we can
summarize the set of all possible values that
can be returned by an invocation of evaluate:

• Number values
• Boolean values
• Primitive operations
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Example Programs in L1

5 ;; => 5
(* 3 2) ;; => 6
(+ (* 3 2) 4) ;; => 10
(> 2 3) ;; => #f
(= 2 (+ 1 1)) ;; => #t
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Example Programs in L1

Note that expressions in general are evaluated
one by one. The order in which expressions are

evaluated does not change their value.
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Example Programs in L1

Only in the case of the define form, there is a
side-effect which makes the sequence of

expressions significant:

(define radius 12)
(define pi 3.14)
(define area (* (* radius radius) pi))
(+ area (* 2 3)) ;; => 458.16
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Sequences in L1

In order to make sense of a program that
includes define forms, we must define a

compound expression which is a sequence of
expressions and its evaluation rule. We will
describe the details of the evaluation rule for
sequences including define-expressions in

more details later.
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What is Not in L1

Let us try to assess what programs can be
written in L1 as defined.
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What is Not in L1

On the side of the restrictions - we have:

• Few primitives - and no way to define other
functions besides primitive functions (no
functional abstraction means).

• The computed values can only be numbers
or booleans - there are no way to build
compound values (no value composition
means).
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What is Not in L1

• We can define global variables and no
scoping mechanism

• There are no control structures
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What is Not in L1

On the positive side:

• We can build expressions as deeply nested
as required

• We can give names to complex expressions
so that they can be reused to avoid
repetition
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What is Not in L1

Programs in L1 always
terminate.
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L2: User Defined Procedures and Conditional Expressions

Let us introduce two new types of expression
into L1 - leading to a new language we will call
L2. We choose to add together user defined
procedures and conditional expressions -

because these two language facilities work well
together. The reason is that we will develop
recursive functions - and when we write a

recursive function, it helps to be able to test for
the base case vs. recursive case.
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Compound Procedure Definition with Lambda

lambda is a special operator which can be used
in a special form of type lambda. The syntax is:

(lambda (<var> ...) <exp> ...)

For example:

(lambda (x) (* x x))

56/113



Compound Procedure Definition with Lambda

This expression is a procedure expression. It
has three sub-expressions:

• The special operator lambda
• The list of parameters - all of which are
variables.

• The body of the procedure - which is a list
of expressions.
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Compound Procedure Definition with Lambda

When this expression is evaluated, it creates a
value whose type is called a closure. We will

denote such values as
<Closure (x) (* x x)>.
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Closures: Composite or Atomic Values?

A closure value contains multiple parts - the
parameters and the body. But there are no

accessors to take apart these components from
the value. This leads to an interesting

distinction:

• From the programmer perspective, a closure
is an atomic value.

• From the interpreter perspective, a closure
is a compound data structure with
accessible sub-components.
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Closures: Composite or Atomic Values?

When a lambda expression is evaluated, the
body is not evaluated.

60/113



Naming User Procedures

To give a name to a procedure, we use the
existing define mechanism:

(define square (lambda (x) (* x x)))
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Naming User Procedures

We will see later in the course that the
capability to name procedures is a big deal - as
it allows the definition of recursive functions -
and, in particular, it changes the expressive

power of the programming language.
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Compound Procedure Application

When a lambda expression is computed, we
obtain a closure. Closures can then be applied

to values. How?

63/113



Compound Procedure Application

The way a closure
val0 = <Closure (p1 ... pn) <exp1> ... <expk>>

is applied to values
(val1 ... valn)

is according to the following rule:
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Compound Procedure Application

1. Replace all occurrences of p1, ..., pn in
the expressions <exp1>, ..., <expk>
of the body of the procedure with the
corresponding values val1, ..., valn.

2. Evaluate all resulting expressions.
3. The value returned by the application is the

value of the last expression <expk>.
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Conditional Expressions

We introduce a third special form to the syntax
of the language, in addition to define and
lambda together with its specific evaluation

rule to enable conditional evaluation.

66/113



Conditional Expressions

The syntax of a Scheme conditional expression
is:

(if <exp> <exp> <exp>)

For example:

(if (> x 2) x (* x 2))
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Conditional Expressions

if is a special operator - it has a special
evaluation rule. The three other

sub-expressions are called the test-part,
then-part, and else-part of the compound

if-expression. They can recursively be any type
of expression.
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Conditional Expressions

Example: abs

(define abs
(lambda (x)

(if (> x 0) x (- x))))
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Conditional Expressions

if-expressions can be nested as needed to
define complicated decisions:

(if (= x y)
0
(if (> x y)

1
-1))
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Conditional Expressions

Scheme also includes an additional special
form called cond which allows a more general

form of conditional expression:
(cond (<p1> <e11> ... <e1k1>)

(<p2> <e21> ... <e2k2>)
...
(else <en1> ... <enkn>))

The sub-expressions of the cond form are
called clauses - each clause starts with a
predicate-expression and is followed by

consequence-expressions. 71/113



Evaluation Rule for If-expressions

To evaluate an if-expression
(if <test-exp> <then-exp> <else-exp>):

1. Let p = evaluate(<test-exp>)
2. If p is true, return
evalaute(<then-exp>)

3. Otherwise, return
evaluate(<else-exp>)
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Evaluation Rule for If-expressions

NOTE: When evaluating an if-expression, the
<test-exp> is always evaluated, but only one
of <then-exp> or <else-exp> is evaluated.
This is in contrast to what happens when we
evaluate a non-special form - where all the

sub-expressions are always evaluated.
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Example Program in L2

The language we have defined so far is quite
expressive. Let us define an example program
demonstrating this: this program implements
Newton’s method for computing square roots.
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Example Program in L2

Newton’s method is stated as this algorithm:

If y is a non-zero guess for
√
x, then y+ x

y
2 is a

better approximation of
√
x.
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Example Program in L2

To start this computation, we provide a
non-zero guess like 1, and we need to decide

when to stop guessing.

This algorithm is iterative:

• Is the current guess good enough? if yes
return it.

• Otherwise, improve the guess and try again.
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Example Program in L2

Interestingly - we can implement this iterative
algorithm even though we have no construct in

the language to iterate.
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Example Program in L2

(define sqrt
(lambda (x) (sqrt-iter 1 x)))

(define sqrt-iter
(lambda (guess x)
(if (good-enough? guess x)

guess
(sqrt-iter (improve guess x)

x))))
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Example Program in L2

(define abs (lambda (x) (if (< x 0) (- x) x)))
(define square (lambda (x) (* x x)))
(define epsilon 0.0001)

(define good-enough?
(lambda (guess x)
(< (abs (- (square guess) x)) epsilon)))

(define average
(lambda (x y) (/ (+ x y) 2)))

(define improve
(lambda (guess x)
(average guess (/ x guess)))) 79/113



Example Program in L2

This program illustrates many of the “good
properties” we associated with the Procedural

Programming paradigm in Chapter 1:
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Example Program in L2

• Encourage the use of small units of codes,
called procedures, which encapsulate
well-defined commands.

• Procedures interact through well-defined
interfaces published by each procedure (the
contract of the procedure, including the
signature of which arguments it expects,
and which return value it returns).
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Example Program in L2

We haven’t discussed local variables (used
inside each procedure without affecting the
state of the program outside the scope of the
procedures). We will see later in the chapter
that even in L2, we have enough semantic

power to define local variables, but we have not
provided syntactic constructs to encourage the

use of this feature.
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Example Program in L2

We have created a hierarchy of procedures,
higher-level procedures call lower-level

procedures:
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Expression Types and Evaluation Rules - Round 2

So what is new in L2?
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Expression Types and Evaluation Rules - Round 2

• We introduced the lambda expression that
evaluates into the closure value

• We know how to apply a closure to a list of
arguments

• We have if-expressions
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What is Not in L2

Note the programming constructs which are
absent from L2:

• No loop structures
• No mutation of variables
• No compound data structures
• No local variables
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Termination

Can you prove that some programs in L2 may
not terminate?
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Termination

(define f (lambda (x) (f x)))
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Extending the Language with Compound Values: L3

We observe that the computed values of L2 are
atomic values (numbers, booleans) or closures
(which are a compound value but which has no

accessors).
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Extending the Language with Compound Values: L3

To introduce compound data values in the
language, we need:

• Constructors for compound values
• Literal expressions that denote compound
values
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Extending the Language with Compound Values: L3

In JavaScript, for example, compound values
are constructed with the array and map

constructors and denoted by the [] and {}
notations.
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Extending the Language with Compound Values: L3

In the minimalist spirit we have adopted so far,
we will introduce into L3 a single compound
value constructor and the capability to use it

recursively.
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The Pair Compound Data Type

A pair is a minimal compound data type that
combines two values together into a single new
unit. The language supports this by introducing:

• A value constructor: this is called cons.
• Accessors to take apart a compound pair
value: these are called car and cdr.

• A type predicate to check whether a value
belongs to the set of pair values: pair?.

• An equality predicate for pairs equal?.
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The Pair Compound Data Type

We thus extend the language with 5 primitive
functions: cons, car, cdr, pair?, equal?.
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The Pair Compound Data Type

In addition, Scheme defines a standard form to
print pair values and literal expressions that
denote pair values: A literal pair expression is

denoted as '(<exp> . <exp>).
For example:

(define p1 '(1 . 5)) ;; literal pair expression
(define p2 (cons 1 5)) ;; constructor invocation

(car p1) ;; => 1
(cdr p1) ;; => 5
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The Pair Compound Data Type

Pairs can be combined recursively into complex
compound values:

(define p3 (cons p1 p2))
(define p4 (cons p3 p2))

(car p3) ;; => '(1 . 5)
(cdr p3) ;; => '(1 . 5)
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The Pair Compound Data Type

The cons pair constructor can receive
parameters of any type. The type of cons is

thus described as:
<T1, T2>(first: T1, second: T2) => Pair<T1, T2>
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The List Compound Data Type

In addition to the Pair data type, L3 introduces
a recursive data type - called List. We first

introduce it inductively:

• The empty list denoted '() is the base case.
• A non-empty list is built by combining a
value v0 together with a list (v1 ... vn)
to obtain a non-empty list
(v0 v1 ... vn) - which combines a head
(v0) and a tail which is a list.
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The List Compound Data Type

Non-empty lists are constructed from a value
and a list. The size that characterizes lists in

this inductive definition is the length of the list:
a list of size n+ 1 is constructed from a value

and a list of size n.
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The List Compound Data Type

The definition of this inductive data type is a
disjoint union between the empty list and

non-empty lists.
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The List Compound Data Type

Scheme implements List values by re-using the
Pair data type for non-empty lists and a special
value for the empty list. The additions to the

language are:
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The List Compound Data Type

• A new primitive value '() and a
corresponding predicate empty?

• A special type of literal compound
expressions for list values: '(e1 ... en)

• The predicate primitive list? to check that
an object belongs to the List data type
(either empty or non-empty).
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The List Compound Data Type

(define l14
(cons 1 (cons 2 (cons 3 (cons 4 '())))))

l14 ;; => '(1 2 3 4)
(list? l14) ;; => #t
(cdr l14) ;; => '(2 3 4)
(car (cdr l14)) ;; => 2
(cons 10 l14) ;; => '(10 1 2 3 4)
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The List Compound Data Type

On the basis of this inductive definition, we can
define functions over lists:

(define length
(lambda (lst)
(if (empty? lst)

0
(+ 1 (length (cdr lst))))))
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The List Compound Data Type

As usual, recursive functions operating over an
inductive type have a structure similar to the
inductive definition of the inductive compound
data type: because List is a disjoint union over
Empty and Non-Empty lists, the structure of a

function operating over lists will be:
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The List Compound Data Type

On the basis of this inductive definition, we can
define functions over lists:

(define <f>
(lambda (lst)

(if (empty? lst)
<process empty list case>
<process non-empty list case>)))
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The List Compound Data Type

For example:
(define nth

(lambda (lst n)
(if (empty? lst)

'()
(if (= n 0)

(car lst)
(nth (cdr lst) (- n 1))))))

(nth '(1 2 3) 2) ;; => 3
(nth '(1 2) 2) ;; => '()
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The List Compound Data Type

The list constructor can also receive
parameters of any types. In particular, we can

be create list of pairs and recursive tree
structures using the compound list data type.
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The List Compound Data Type

Another list constructor is available - which
avoids the need for nested calls to cons:

(list <e1> ... <en>)
evaluates to

'(v1 ... vn)
where vi is the value of <ei>.
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Expression Types and Evaluation Rules - Round 3

So what is new in L3?
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Atomic Expressions

• New primitive procedures for handling pairs
and lists:
cons, car, cdr, pair?, list?

• New atomic literal expression for the empty
list: '()
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Compound Expressions

• Literal compound expressions:
'(<lit> . <lit>) for pairs,
'(<lit> ... <lit>) for lists.
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Computed Values

• Pairs
• Lists
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