
Principles of Programming Languages
Syntax

1/143

Previously

In the previous lectures, we introduced new
programming languages by adopting the

following method:

2/143

Previously

• Define the syntax of the language - which
defines the set of all possible expressions in
the language.

• Define the set of all possible values that can
be computed by the language.

• Define the computation rules for each type
of expression which map any expression to
a value.

3/143

Previously

This method provides a complete operational
semantics procedure for the language by

applying the method of structural induction: by
applying the computation rules over all
possible expressions in the language

recursively, we can map any expression to a
value.

4/143

Today

To describe this process more formally, we must
provide a more detailed account of the syntax
of the language. This is the topic of this lecture.

5/143

Agenda

We are going to cover many aspects of syntax,
so let’s see what we’re getting into:

1. What are concrete syntax and abstract
syntax?

2. How to specify concrete syntax?
3. Abstract syntax in-depth
4. Abstract syntax in TypeScript
5. The E Language - Putting it all together

6/143

Syntax: Concrete vs. Abstract

The syntax of a language determines which
sequences of tokens form an expression in the
language (and which don’t). It also determines

how to extract the significant parts of the
expression, and what is their function within

the larger expression.

7/143

Syntax: Concrete vs. Abstract

The syntax also has another objective: make it
easy for humans to read and understand code
and identify the structure of expressions which

form the program.

8/143

Syntax: Concrete vs. Abstract

For example, this:

(define f
(lambda (x y)
(let ((a (+ 1 (* x y)))

(b (- 1 y)))
(+ (* x (square a))

(* y b)
(* a b)))))

9/143

Syntax: Concrete vs. Abstract

is much more convenient than this:

(define f
(lambda (x y)
((lambda (a b)

(+ (* x (square a))
(* y b)
(* a b)))

(+ 1 (* x y))
(- 1 y))))

10/143

Syntax: Concrete vs. Abstract

Accordingly, we distinguish two aspects of the
definition of the syntax of a programming

language:

11/143

Syntax: Concrete vs. Abstract

• Concrete syntax: this determines how
expressions “look like” to the programmer.
It includes devices such as keywords to
mark the type of the expression, delimiters
and punctuation, parentheses, indentation.

12/143

Syntax: Concrete vs. Abstract

• Abstract syntax: this is an internal data type
representing expressions of the program in
a way that is easy to consume by programs
operating on expressions - such as
interpreters or compilers. Such data types
are called abstract syntax trees (AST).

13/143

Different Concrete Syntax, Same Abstract Syntax

In general, concrete syntax can be quite varied
- according to stylistic preferences. For

example, most languages encode arithmetic
operations in infix style as in: 1 + 2 * 3.

Scheme uses a prefix syntax as in:
(+ 1 (* 2 3)) which more or less

corresponds to the English way of expressing:
“the sum of 1 and the product of 2 and 3.”

14/143

Different Concrete Syntax, Same Abstract Syntax

Similarly, there can be different concrete syntax
ways to express the same construct. In

JavaScript, we saw that we can define functions
in two ways:

• With the function keyword:
function (<params>) { <body> };

• With the fat-arrow construct:
(<params>) => <body>;

15/143

Different Concrete Syntax, Same Abstract Syntax

In Scheme, we also saw that different concrete
syntax forms are interpreted in the same way -

for example:

• (let ((a 1)) (f a)) is interpreted in
the same way as
((lambda (a) (f a)) 1).

• (if (f x) (+ x 1) x) is interpreted in
the same way as
(cond ((f x) (+ x 1)) (else x)).

16/143

Concrete Syntax Can Be Ambiguous

In order to interpret concrete syntax, an
interpreter must be able to:

• Separate the sub-parts of an expression
• Determine what is the role of each sub-part
within the expression

17/143

Concrete Syntax Can Be Ambiguous

For example, in a JavaScript statement:

if (x > 2)
console.log("big");

else
console.log("small");

18/143

Concrete Syntax Can Be Ambiguous

The keyword if is used to mark the type of the
conditional compound statement which has 3
components - the test ((x>2)), the consequent
statement and the alternative statement. The

keyword else is used to separate the
consequent from the alternative and to

indicate the role that the alternative statement
plays with respect to the if-statement of which

it is a part.

19/143

Concrete Syntax Can Be Ambiguous

Sometimes, the relation between embedded
components and their parents is ambiguous.
For example, in the following statement, the
place of the else statement is ambiguous:

if (x > 2)
if (y < 4)
console.log("mid");

else
console.log("small");

20/143

Concrete Syntax Can Be Ambiguous

We could interpret the syntactic structure in
two ways:

• Either it is the else part matching the
(x > 2) test

• Or it is the else part matching the (y < 4)
test

21/143

Concrete Syntax Can Be Ambiguous

Similarly, in the infix expression: 1 + 3 * 5
The structure could be interpreted as either:

• 1 + (3 * 5) (which reduces to 16)
• (1 + 3) * 5 (which reduces to 20)

22/143

Concrete Syntax Can Be Ambiguous

These forms of ambiguity are frequent in
natural language as well - as in the example: “I
saw a man on the hill with a telescope.” which

can be interpreted in multiple ways.

23/143

Concrete Syntax Can Be Ambiguous

In natural languages, we rely on the intelligence
of the reader to resolve these ambiguities.

In programming languages, in contrast, such
ambiguities must be resolved in a unique and

deterministic manner - so that the same
program is always interpreted in the same

manner. The concrete syntax, therefore, must
also provide precedence rules to disambiguate

such cases.

24/143

Concrete Syntax Can Be Ambiguous

For example, in infix arithmetic notation,
preference rules specify that the operations *
and / have higher precedence over operations

+ and -.

25/143

Concrete Syntax Can Be Ambiguous

When multiple operations with the same
preference occur, associativity rules determine

how operations are grouped. For example,
1 - 3 - 5 is interpreted as (1 - 3) - 5
(yielding -7) and not as 1 - (3 - 5) (which
would yield 3) - because the infix operator - is

specified as left-associative.

26/143

Concrete Syntax Can Be Ambiguous

Parentheses can also be used in most
languages to explicitly override or indicate the
desired syntactic structure of an expression -

as in 1 - (3 - 5).

27/143

Concrete Syntax Can Be Ambiguous

The Scheme concrete syntax does not require
such precedence and associativity

disambiguation rules, because it requires full
parentheses to explicitly encode the structure

of expressions.

28/143

Parser

• Concrete syntax is intended to be read by
humans

• Abstract syntax is intended to be consumed
by programs (interpreter, compiler...)

It is the role of a parser to map the input
concrete syntax (encoded as a string) into ASTs.

29/143

Parser

To specify how a parser works, we must specify
both:

• The rules of the concrete syntax
• The structure of all possible ASTs the parser
can construct

A good way to think about the role of the parser
is that it is a factory to construct ASTs given
linear string representations of programs.

30/143

Specifying Concrete Syntax

Concrete syntax is defined as a formal language
using grammatical rules.

31/143

Specifying Concrete Syntax

Programming language specifications have
mostly adopted mild variants of context free
languages (CFG) to specify concrete syntax. In
the hierarchy of formal languages, CFGs are

right above regular language and below context
sensitive languages (which are hard to parse).

32/143

Specifying Concrete Syntax

In programming languages, language designers
have adopted the Backus-Naur Form (BNF)
notation to specify formally the rules of

concrete syntax.

33/143

BNF Specification

BNF is a meta-syntax used to express
context-free grammars: it is a formal way to

describe formal languages. BNF specifications
include two types of rules:

• Lexical rules
• Syntactic rules

34/143

BNF Specification

Lexical rules determine how to tokenize a
stream of characters into a stream of significant
tokens. It indicates which delimiters can be

skipped (for example, white spaces) and which
delimiters indicate the end or beginning of
other tokens (for example, parentheses or

punctuation).

35/143

BNF Specification

Lexical rules also specify the types of tokens
that can be distinguished - for example,

numbers are sequences of digit characters,
identifiers are sequences of alpha-numeric
characters, left parenthesis, right parenthesis

etc.

36/143

BNF Specification

Syntactic rules determine how tokens are
combined into significant hierarchical

structures which form the expressions of the
language. Syntactic rules refer to the token

categories defined by lexical rules.

37/143

BNF Specification

Usually, lexical rules form a regular language -
which are powerful enough to describe

tokenization. In contrast, syntactic rules form a
context free language (sometimes BNFs are
extended to support mildly more powerful

languages than CFGs).

38/143

BNF Specification

Because lexical rules and syntactic rules are of
different nature, they are processed by

different software components:

• The scanner turns a stream of characters
into a stream of tokens (each tagged by its
category).

• The parser turns a stream of tokens into a
parse tree where each token is a terminal,
covered by non-terminal categories.

39/143

Scheme Lexical Rules

Consider the first few lexical rules in the
Scheme specification:

40/143

Scheme Lexical Rules

<token> ::= <identifier> | <boolean> | <number>
| <character> | <string> | (|) | ' | .

<delimiter> ::= <whitespace> | (|) | " | ;
<whitespace> ::= <space or newline>
<comment> ::= ; <all characters up to a line break>
<identifier> ::= <initial> <subsequent>*
<initial> ::= <letter>
<letter> ::= a | b | c | ... | z
<subsequent> ::= <initial> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<string> ::= " <string element>* "
<string element> ::= <any character other than " or \>

| \" | \\
<boolean> ::= #t | #f

41/143

Scheme Lexical Rules

In BNF notation, categories (non-terminals) are
denoted as <category>. Rules are specified

as <lhs> ::= rhs – where lhs is the
left-hand side of the rule, rhs the right-hand

side.

42/143

Scheme Lexical Rules

The LHS of rules is a single <category>
(which means that the language defined by BNF
is CFG or Regular and not Context Sensitive or

Recursively Enumerable).

43/143

Scheme Lexical Rules

The RHS can be a sequence of terminals (for
lexical rules, terminals are characters) or

categories, or an alternation of such sequences,
indicated by the | special character. In

syntactic rules, terminals are usually marked
with quotes around them.

44/143

Scheme Lexical Rules

Within the RHS sequences, categories can be
followed by the special markers * to indicate
repetition 0 or more times, + to indicate 1 or

more times and ? to indicate optional
elements.

45/143

Scheme Lexical Rules

Observe in particular that the lexical rules
above are not recursive (there is no category
reachable from the RHS which is on the LHS).

Because lexical rules denote a regular
language, we can use regular expressions to

implement the scanner.

46/143

Scheme Syntactic Rules

Consider the top-level (slightly simplified)
definition of Scheme expressions in the formal

syntactic rules for Scheme:

<expression> ::= <variable>
| <procedure-call>
| <lambda expression>
| <conditional>
| <literal>

<variable> ::= <identifier>
47/143

Scheme Syntactic Rules

These are the different types of syntactic forms
that are defined in Scheme - this rule only

contains a disjunction. Each syntactic form is
defined in turn:

48/143

Scheme Syntactic Rules

Procedure call:
<procedure call> ::= (<operator> <operand>*)
<operator> ::= <expression>
<operand> ::= <expression>

49/143

Scheme Syntactic Rules

An example concrete string that corresponds to
this specification of procedure call is:

(+ a b)

50/143

Scheme Syntactic Rules

It is recognized by first applying lexical rules to
turn it into a sequence of tokens:

<(:lparen> <+:id> <a:id> <b:id> <):rparen>

51/143

Scheme Syntactic Rules

Each token is annotated by its category as
recognized by the scanner.

The concrete parser then turns this stream of
tokens into a concrete parse tree:

(expression
(procedure-call
(lparen)
(operator (expression (variable <+:id>)))
(operands ((expression (variable <a:id>))

(expression (variable <b:id>))))
(rparen)))

52/143

Scheme Syntactic Rules

This representation corresponds to the
instantiation of the

<expression> ::= <procedure call>
syntactic rule on a specific sequence of tokens.
It is a tree - with the non-terminal category as
its root, and derived categories as children.

There is one child for each element in the RHS
of the rules.

53/143

Scheme Syntactic Rules

54/143

Scheme Syntactic Rules

The syntactic rule is recursive - the category
<expression> can be derived into an

expression of type <procedure call> which
in turn, contains in its derivation components
of type <expression>. This leads to the
observation that the defined language is an

infinite set of expressions.

55/143

Scheme Syntactic Rules

Lambda expression:
<lambda expression> ::= (lambda <formals> <body>)
<formals> ::= (<variable>*)
<body> ::= <sequence>
<sequence> ::= <command>* <expression>
<command> ::= <expression>

56/143

Scheme Syntactic Rules

An example string recognized by this rule is:

(lambda (x) x)

57/143

Scheme Syntactic Rules

which is recognized as a lambda-expression
through the following derivation parse tree:

(lambda-expression
(lparen)
(lambda)
(formals (lparen)

((variable <x:id>))
(rparen))

(body (sequence ((commands ())
(expression (variable <x:id>)))))

(rparen))

58/143

Scheme Syntactic Rules

This tree proves that the expression belongs to
the <lambda-expression> category. It can
be read as a top-down derivation through the

rules of the grammar:
1. <lambda-expression> ::= (lambda <formals> <body>)
2. <formals> ::= (<variable>*)
3. <variable>* ::= <variable>
4. <variable> ::= <x:id>
5. <body> ::= <command>* <expression>
6. <command>* ::= <empty>
7. <expression> ::= <variable>
8. <variable> ::= <x:id>

59/143

Scheme Syntactic Rules

Conditional expressions:
<conditional> ::= (if <test> <consequent> <alt>)
<test> ::= <expression>
<consequent> ::= <expression>
<alt> ::= <expression>

60/143

Scheme Syntactic Rules

An example expression of this category is:

(if (> x 0) x (- x))

61/143

Scheme Syntactic Rules

Literal expressions:
<literal> ::= <quotation> | <self-evaluating>
<self-evaluating> ::= <boolean>

| <number>
| <string>

<quotation> ::= '<datum> | (quote <datum>)

62/143

Scheme Syntactic Rules

Datum (also called s-exp for
Symbol-Expressions) plays in Scheme the same

role as the JSON notation in JavaScript - it
corresponds to the external notation for values

that can be read by the read primitive
procedure and manipulated as a value. Note

that any string that parses as an
<expression> will also parse as a <datum>:

63/143

Scheme Syntactic Rules

<datum> ::= <simple datum> | <compound datum>
<simple datum> ::= <boolean>

| <number>
| <string>
| <symbol>

<symbol> ::= <identifier>
<compound datum> ::= <list>
<list> ::= (<datum>*) | (<datum>+ . <datum>)

64/143

Scheme Syntactic Rules

Examples of literal expressions in Scheme are:
1
'1
#t
#f

"a string"
'symbol
'()
'(1)
'(a 1)
'(a . 1)
'(a b . 1)

65/143

Scheme Syntactic Rules

It is a remarkable property of Scheme that the
concrete syntax of the language can be
recognized as a literal value. It makes it
possible with little effort to manipulate

programs as data. In other words, the concrete
syntax of Scheme is a subset of the

S-Expressions.

66/143

Scheme Syntactic Rules

This is not the case for JavaScript with the JSON
notation - JavaScript programs are not JSON
literal expressions and cannot be read by a

primitive function in the language. For example,
the expression x => x is a JavaScript

expression, but it is not a valid JSON literal
value.

67/143

Abstract Syntax

The Abstract Syntax of a language is a way to
encode expressions in a way that captures the
relevant information in the expressions so that
they can be processed by programs. The key
perspective is that Abstract Syntax considers
programs as data - so that they can be

manipulated by other programs.

68/143

Abstract Syntax

Abstract syntax removes details from the
concrete syntax and presents the parsed

expressions through an abstract interface that
can be manipulated by an interpreter or a

compiler. The overall pipeline of modules we
have defined at this point is summarized here:

69/143

Abstract Syntax

Program as string scanner
=======⇒
lexical rules

Stream of tokens
parser

========⇒
syntactic rules

Abstract syntax
interpreter

==========⇒
computation rules

Value

70/143

Abstract Syntax

The abstract syntax of a language captures the
following two types of relations between

expressions and other expressions:

• An expression can be of different types of
expressions.

• An expression is composed of
sub-expressions, each fulfilling a specific
role with respect to the parent expression.

71/143

Abstract Syntax

For example, in the Scheme abstract syntax, an
expression can be of the following types:

<expression> ::= <variable>
| <procedure call>
| <lambda expression>
| <conditional>
| <literal>

We call this relation a disjunction between
different types of expressions.

72/143

Abstract Syntax

A specific expression type, such as a
lambda-expression, contains sub-expressions:

lambda-expression:
formals: List(var-expression)
body: List(expression)

We call this relation a conjunction between
different sub-expressions.

73/143

Abstract Syntax

Note that when we specify a conjunction in
abstract syntax, we abstract away the details of
the concrete syntax - for example, the fact that
the keyword lambda is used to mark this type
of expression and the place of parentheses to

separate the components of the
sub-expressions (formals and body) within the
parent expression (the lambda-expression).

74/143

Abstract Syntax as Disjoint Union Type

Abstract Syntax defines a data type which
denotes a set of values: the values

representing all legal expressions in the
programming language.

75/143

Abstract Syntax as Disjoint Union Type

Abstract syntax defines alternative kinds for
expression categories, and the components of
composite elements. For each component, the

abstract syntax defines:

• its role in the composite sentence
• its category
• its cardinality (Specifically, we distinguish
single value components and List value
components)

76/143

Abstract Syntax as Disjoint Union Type

We apply the construct of disjoint union types
to define formally the abstract syntax of a
language. The notation we adopt is the

following (defined in the book “Essentials of
Programming Languages”):

77/143

Abstract Syntax as Disjoint Union Type

<exp> ::= <define> | <cexp> / def-exp | cexp
<define> ::= (define <var> <cexp>) / def-exp(var:varDecl, val:cexp)
<var> ::= <identifier> / varRef(var:string)
<binding> ::= (<var> <cexp>) / binding(var:varDecl, val:cexp)
<cexp> ::= <number> / num-exp(val:number)

| <boolean> / bool-exp(val:boolean)
| <string> / str-exp(val:string)
| <varRef> / varRef(var)
| (lambda (<varDecl>*) <cexp>+) / proc-exp(params:List(varDecl), body:List(cexp))
| (if <cexp> <cexp> <cexp>) / if-exp(test: cexp, then: cexp, else: cexp)
| (let (binding*) <cexp>+) / let-exp(bindings:List(binding), body:List(cexp))
| (<cexp> <cexp>*) / app-exp(operator:cexp, operands:List(cexp))
| (quote <sexp>) / literal-exp(val:sexp)

78/143

Abstract Syntax as Disjoint Union Type

This definition combines in one notation the
concrete syntax syntactic rules as BNF notation
and for each rule, the corresponding abstract

syntax type.

79/143

Abstract Syntax as Disjoint Union Type

The abstract syntax type is a variant notation of
what would be defined as disjoint types in

TypeScript as follows:

80/143

Abstract Syntax as Disjoint Union Type

// Disjoint union types
type Exp = DefineExp | CExp;
type CExp = NumExp | BoolExp | StrExp | IfExp | PrimOp

| VarRef | ProcExp | AppExp | LitExp | LetExp;

// Composite types
interface Program { tag: "Program"; exps: Exp[]; }
interface DefineExp { tag: "DefineExp"; var: VarDecl; val: CExp; }
interface NumExp { tag: "NumExp"; val: number; }
interface BoolExp { tag: "BoolExp"; val: boolean; }
interface StrExp { tag: "StrExp"; val: string; }
interface PrimOp { tag: "PrimOp"; op: string; }
interface VarRef { tag: "VarRef"; var: string; }
interface VarDecl { tag: "VarDecl"; var: string; }
interface AppExp { tag: "AppExp"; rator: CExp; rands: CExp[]; }
interface IfExp { tag: "IfExp"; test: CExp; then: CExp; alt: CExp; }
interface LitExp { tag: "LitExp"; val: SExp; }
interface LetExp { tag: "LetExp"; bindings: Bindings[]; body: CExp[]; }
interface ProcExp { tag: "ProcExp"; params: VarDecl[]; body: CExp[]; }

81/143

Abstract Syntax as Disjoint Union Type

Given this definition of Abstract Syntax types,
the role of the parser is to map concrete
expressions (strings) to values of the

appropriate type.

82/143

Abstract Syntax as Disjoint Union Type

For example, the expression (lambda (x) x)
corresponds to the abstract syntax tree:

83/143

Abstract Syntax as Disjoint Union Type

This tree value is encoded as follows in a
Scheme implementation of the AST data type:
'(proc-exp ((var-exp x)) ((var-exp x)))

84/143

Abstract Syntax as Disjoint Union Type

In a JSON type corresponding to the TypeScript
type definitions above, it is encoded as the
following value, in which we distinguish here
between the two roles of variables: variable

declarations as VarDecl when they appear in
the context of the procedure formal

parameters) and variable references as
VarRef:

{ tag: 'ProcExp',
params: [{ tag: 'VarDecl', var: 'x' }],
body: [{ tag: 'VarRef', var: 'x' }] } 85/143

Abstract Syntax as Disjoint Union Type

Similarly, the expression
(if #t (+ 1 2) 'ok) corresponds to the

abstract syntax tree:

86/143

Abstract Syntax as Disjoint Union Type

This tree can be encoded in a Scheme value as
follows:

'(if-exp (bool-exp #t)
(app-exp (var-exp +)

((num-exp 1) (num-exp 2)))
(literal-exp ok))

87/143

Abstract Syntax as Disjoint Union Type

And in the following JSON value in TypeScript:
{ tag: 'IfExp',

test: { tag: 'BoolExp', val: true },
then:
{ tag: 'AppExp',
rator: { tag: 'PrimOp', op: '+' },
rands: [{ tag: 'NumExp', val: 1 },

{ tag: 'NumExp', val: 2 }] },
alt: { tag: 'LitExp',

val: { tag: 'SymbolSExp', val: 'ok' } } }

88/143

Abstract Syntax as Disjoint Union Type

It should be clear that abstract syntax is not
intended for human consumption. ASTs are to
be consumed by programs that manipulate

expressions.

89/143

Parse Tree vs. AST

In the AST type definitions, disjoint union types
(<exp>, <cexp>) play the role of abstract
types (as was defined in Java) - that is, there
are no values in the AST of this specific type.
There can only be values of composite types

with components.

90/143

Parse Tree vs. AST

Compare the AST displayed above with the
parse tree displayed when we discussed

concrete syntax:

91/143

Parse Tree vs. AST

92/143

Parse Tree vs. AST

93/143

Parse Tree vs. AST

The parse tree includes trees for
<expression> - the AST does not.

94/143

Parse Tree vs. AST

These two trees play different functions:

• The AST is a concrete value that will be
manipulated by the interpreter.

• The parse tree is a proof that a concrete
expression belongs to the language.

95/143

Implementing ASTs in TypeScript

ASTs describe types which correspond directly
to Disjoint Union Types.

We implement them in TypeScript in the
following manner:

96/143

Implementing ASTs in TypeScript

For every composite type CT, define:

• A type definition
interface CT { tag:"CT"; ... }
with a field for each constituent.

• A value constructor named makeCT
• A type predicate named isCT

97/143

Implementing ASTs in TypeScript

For every disjoint union type DT, define:

• A type definition
type DT = CT1 | CT2 | ...

• A type predicate named isDT

98/143

Implementing ASTs in TypeScript

The functions defined by this recipe provide a
functional interface which encapsulates the

data type definition.

99/143

Implementing ASTs in TypeScript

For example, let us consider the following
abstract syntax definition. It specifies infix

arithmetic formula, with no parentheses (not
Scheme expressions):

<E> ::= <number> / num-exp(val:number)
| <E> + <E> / add-exp(arg1:E, arg2:E)
| <E> * <E> / mul-exp(arg1:E, arg2:E)

100/143

Implementing ASTs in TypeScript

We derive one disjoint union type (E) and three
composite types (num-exp, add-exp and

mul-exp).
We define the following AST definition:

101/143

Implementing ASTs in TypeScript

// Disjoint type E
type E = NumExp | AddExp | MulExp;
const isE = (x: any): x is E =>
isNumExp(x) || isAddExp(x) || isMulExp(x);

102/143

Implementing ASTs in TypeScript

// For each constituent type define an interface,
// a constructor and a type predicate.
interface NumExp { tag: "NumExp"; val: number; };
const makeNumExp = (n: number): NumExp =>

({ tag: "NumExp", val: n });
const isNumExp = (x: any): x is NumExp =>

x.tag === "NumExp";

interface AddExp { tag: "AddExp"; left: E; right: E };
const makeAddExp = (left: E, right: E): AddExp =>

({ tag: "AddExp", left: left, right: right });
const isAddExp = (x: any): x is AddExp =>

x.tag === "AddExp";

interface MulExp { tag: "MulExp"; left: E; right: E };
const makeMulExp = (left: E, right: E): MulExp =>

({ tag: "MulExp", left: left, right: right });
const isMulExp = (x: any): x is MulExp =>

x.tag === "MulExp";

103/143

Parser as AST Factory

The parser plays the role of a factory of ASTs -
given a stream of tokens, it returns an AST of

the appropriate type.

In the case of working on Scheme, it is
convenient to split the work of the parser in 2

stages:

• Stream of tokens to S-exp
• S-exp to AST

104/143

Parser as AST Factory

This strategy exploits the characteristic
property of Scheme that all Scheme

expressions are also S-expressions. For other
languages (such as JavaScript or Python), a
similar strategy is also often employed.

105/143

Parser as AST Factory

In TypeScript, we rely on an existing package to
parse S-expressions into nested lists of tokens.

This package is installed through npm:
> npm install s-expression

106/143

Parser as AST Factory

This package performs two functions:

• Scanning
• Token stream to s-exp conversion

107/143

Parser as AST Factory

The following example illustrates the structure
of a parser.

108/143

The Sexp Type

The S-expression parser we use from npm is
written in JavaScript - it does not specify the

type of the value it returns.

109/143

The Sexp Type

We analyzed the code, and inferred manually
the precise type returned by this parser and
added this type annotation, which we add as
the “contract” that we expect from the library
and which can be trusted by the TypeScript

type checker. This is achieved by adding a file
with extension .d.ts in our codebase:

110/143

The Sexp Type

declare module 's-expression' {
export type SexpString = String;
export type Token = string | SexpString;
export type CompoundSexp = Sexp[];
export type Sexp = Token | CompoundSexp;

/*
The types returned by the parser are:
string - for any token which is not a string,

according to the tokenization rules
of S-expressions.

SexpString - for tokens of the form "..."
Sexp[] - for S-expressions that contain sub-expressions

(of the form "(<s-expr1> ... <s-exprn>)")
*/
export default function parse(x: string): Sexp;

}
111/143

The Sexp Type

The S-expression parser interprets all atomic
tokens according to Scheme’s lexical rules. In
particular, it encodes tokens of type string,

which are written as balanced double-quotes
"..." in a specific TypeScript type called

String (with capital-S, which is different from
the usual string). We call this token type a

SexpString in our type definition.

112/143

The Sexp Type

The structure of the Sexp type is the usual
disjunction between Atomic tokens and

Compound expressions. Atomic tokens form
the base case of the inductive definition.

Compound expressions are encoded as arrays
of embedded expressions.

113/143

Recognizing Token Types

Different types of tokens can be returned by
the parser - as indicated by the Scheme lexical

rule reviewed above:
<token> ::= <identifier> | <boolean> | <number>

| <character> | <string>
| (|) | ' | .

114/143

Recognizing Token Types

The relevant types of tokens must be
recognized by analyzing a Token value to
decide the type of literal value the token

represents (boolean, number or string). We use
the following TypeScript type predicates (using

the TypeScript type predicate notation
x is T):

115/143

Recognizing Token Types

// Parsing utilities to distinguish types of tokens
const isArray = Array.isArray;
const isString = (x: any): x is string =>

typeof x === "string";
const isNumber = (x: any): x is number =>

typeof x === "number";
const isBoolean = (x: any): x is boolean =>

typeof x === "boolean";

const isSexp = (x: any): x is Sexp =>
isToken(x) || isCompoundSexp(x);

const isToken = (x: any): x is Token =>
isString(x) || isSexpString(x);

const isCompoundSexp = (x: any): x is CompoundSexp =>
isArray(x) && allT(isSexp, x);

116/143

Recognizing Token Types

// Four types of Tokens:
// identifier, boolean, number and string.
// (We do not support Scheme character tokens)
const isBooleanString = (x: string): boolean =>

x === '#t' || x === '#f';

// A weird method to check that a string
// is a string encoding of a number - check +x
const isNumericString = (x: string): boolean =>

JSON.stringify(+x) === x;

117/143

Recognizing Token Types

// A predicate for a valid identifier
// In Scheme, a valid identifier is a token
// that starts with an alphabetic letter (a-z or A-Z)
// followed by any number of letters or numbers.
// As discussed in the Section on Lexical Rules - we use
// Regular Expressions (regexp) to recognize these.
type Identifier = string;
const isIdentifier = (x: any): x is Identifier =>

/[A-Za-z][A-Za-z0-9]*/i.test(x);

118/143

Recognizing Token Types

The code above corresponds to the TypeScript
implementation (our meta-language) of the
BNF Lexical Rules discussed above. We use
TypeScript primitives when they exist to

distinguish among the various types of tokens
(string, number). For more delicate tests, we
rely on Regular Expressions (regexp) - as

exemplified in the isIdentifier predicate.

119/143

Recognizing Token Types

Since we rely on the S-expression external
library to parse S-Expressions into TypeScript

values, we introduce TypeScript type definitions
that reflect the exact types we expect.

120/143

Recognizing Token Types

// s-expression returns strings quoted as "a"
// as [String: 'a'] objects to distinguish them from
// symbols - which are encoded as 'a'.
// These are constructed using the new String("a")
// constructor and can be distinguished from regular
// strings based on the constructor.
const isSexpString = (x: any): x is SexpString =>

! isString(x) &&
x.constructor &&
x.constructor.name === "String";

121/143

Recognizing Token Types

const isSexp = (x: any): x is Sexp =>
isToken(x) || isCompoundSexp(x);

const isToken = (x: any): x is Token =>
isString(x) || isSexpString(x);

const isCompoundSexp = (x: any): x is CompoundSexp =>
isArray(x) && allT(isSexp, x);

122/143

Recognizing Token Types

The external s-expression parser library can fail
when it faces an illegal combination of

parentheses or ill-formed tokens. In this case,
it returns a value of type Error.

In the rest of the course, we will use a
functional approach to handle errors, based on
the Result<T> monad. Therefore, we wrap the

call to the library parser in a function that
adapts the Error protocol into a

Result<Sexp>:
123/143

Recognizing Token Types

const parse = (x: string): Result<Sexp> => {
const parsed = p(x);
return isError(parsed) ? makeFailure(parsed.message)

: makeOk(parsed);
}

124/143

Parsing into an AST

Given a stream of tokens, each one identified
as a specific type of Token (number, identifier,
boolean) according to the lexical rules of the

grammar, we now construct an AST. The
following code shows how to construct an AST
according to the rules of the grammar for the

E-expressions shown above:

125/143

Parsing into an AST

<E> ::= <number> / num-exp(val:number)
| <E> + <E> / add-exp(arg1:E, arg2:E)
| <E> * <E> / mul-exp(arg1:E, arg2:E)

126/143

Parsing into an AST

// Toplevel function: parse a string into an E expression.
// Since parse can fail, return a Result<E>
// We split the parsing process in 2 stages:
// - Tokenization and embedding with the general S-expression
// parser.
// - Parsing according to the E-grammar implemented
// in this package.
// We adopt the Result<T> monad pattern to process errors.
// bind is used to compose functions that return
// Result<T> values.
// - First invoke parse(x)
// - If the result is a Failure, stop
// - Else we received an Ok<Sexp> value,
// pass the Sexp result to the next function (parseESexp)
export const parseE = (x: string): Result<E> =>

bind(parse(x), (s: Sexp) => parseESexp(s));

127/143

Parsing into an AST

// Parsing

const parseESexp = (sexp: Sexp): Result<E> =>
isEmpty(sexp) ? makeFailure("Unexpected empty") :
isString(sexp) ? parseEAtomic(sexp) :
isArray(sexp) ? parseECompound(sexp) :
// Quoted strings are not legal in the E-expression language
makeFailure("Expected either a compound expression or

a token, got a quoted string");

128/143

Parsing into an AST

// Only numeric tokens are ok in this language
// We decided not to refer to "+" and other primitives
// as distinct atomic expressions.
// The decision is different in Scheme (and L1)
const parseEAtomic = (sexp: string): Result<E> =>

isNumericString(sexp) ? makeOk(makeNumExp(+sexp)) :
makeFailure("Bad token " + sexp);

129/143

Parsing into an AST

// Compound expressions must be of the form
// (<exp> <op> <exp>) where op in (*, +)
// This procedure is recursive since the left
// and right sides can be embedded compound expressions.
const parseECompound = (sexps: Sexp[]): Result<E> =>
(sexps.length !== 3) ? makeFailure("Wrong length") :
// safe2 is used to handle Failure cases:
// We write the code for the happy path (good E values)
// in f(arg1, arg2) and safe2(f(arg1, arg2)) processes
// errors properly - return Failure if one of them is error,
// else call f.
isString(sexps[1]) ?
safe2((arg1: E, arg2: E) => parseE3(sexps[1], arg1, arg2))
(parseESexp(sexps[0]), parseESexp(sexps[2])) :

makeFailure("Expected operator, got compound expression");

130/143

Parsing into an AST

const parseE3 = (op: Sexp, arg1: E, arg2: E): Result<E> =>
op === "+" ? makeOk(makeAddExp(arg1, arg2)) :
op === "*" ? makeOk(makeMulExp(arg1, arg2)) :
makeFailure("Bad operator " + op);

131/143

Parsing into an AST

parseE("1");
// => { tag: 'Ok', value: { tag: 'NumExp', val: 1 } }

parseE("(1 + 2)");
// => { tag: 'Ok',
// value: { tag: 'AddExp',
// left: { tag: 'NumExp', val: 1 },
// right: { tag: 'NumExp', val: 2 } } }

132/143

Parsing into an AST

In this example, there is no handling for
precedence rules or various associativity. So

that, we do not know how to parse an
expression such as 1 + 2 * 3. This would
require explicit handling of a stack to resolve
the ambiguous structure into an unambiguous

fully parenthesized structure.

133/143

Parsing into an AST

This is as much as needed for Scheme parsing -
for other languages, more logic would be

needed to implement such rules. You will learn
about more complex parsing implementation in

the Compilation course.

134/143

Recipe for Processing ASTs

This convention to implement the AST as a
disjoint union types with make-constructors

and is-type-predicates determines the
interface between the parser module and the

interpreter.
On the basis of this recipe, we define a recipe
to write procedures that process ASTs relying

on the disjoint-union type interface.

135/143

Recipe for Processing ASTs

For example, let us write a function to compute
the height of an AST for the simple arithmetic

language introduced above.
const Eheight = (e: E): number =>
isNumExp(e) ? 0 :
isAddExp(e) ? Math.max(Eheight(e.left),

Eheight(e.right)) + 1 :
isMulExp(e) ? Math.max(Eheight(e.left),

Eheight(e.right)) + 1 :
e; // never

136/143

Recipe for Processing ASTs

This typical processor of AST has the following
structure:

137/143

Recipe for Processing ASTs

• The type is [AST -> something]
• The structure of the function is a
conditional expression that covers all types
of expressions according to the AST
disjoint-type definition.

138/143

Recipe for Processing ASTs

• For each branch in the conditional, the code
breaks the AST into its components using
the AST accessors for the specific type of
the branch. (For example, in the branch for
isAddExp, we have accessors for
AddExp.left and AddExp.right.)

• Usually, the function is called recursively on
each of the components of compound AST
values.

139/143

Recipe for Processing ASTs

The type system of TypeScript infers that the
parameter e is of type AddExp in the clause

that follows the isAddExp guard, and similarly
for isMulExp - so that we obtain type-safe
code in TypeScript when using this idiom.

140/143

Scheme Abstract Syntax

In the rest of the review of the interpreter we
will adopt this syntax for Scheme:

141/143

Scheme Abstract Syntax

<program> ::= <exp>+ / program(exps:List(exp))
<exp> ::= <define> | <cexp> / def-exp | cexp
<define> ::= (define <varDecl> <cexp>) / def-exp(var:varDecl, val:cexp)
<binding> ::= (<varDecl> <cexp>) / binding(var:varDecl, val:cexp)
<cexp> ::= <number> / num-exp(val:number)

| <boolean> / bool-exp(val:boolean)
| <string> / str-exp(val:string)
| <varRef> / varRef(var:string)
| (lambda (<var>*) <cexp>+) / proc-exp(params:List(varDecl), body:List(cexp))
| (if <cexp> <cexp> <cexp>) / if-exp(test: cexp, then: cexp, else: cexp)
| (let (binding*) <cexp>+) / let-exp(bindings:List(binding), body:List(cexp))
| (<cexp> <cexp>*) / app-exp(operator:cexp, operands:List(cexp))
| (quote <sexp>) / literal-exp(val:sexp)

142/143

Scheme Abstract Syntax

The <define> category is defined in a way that
define expressions cannot be embedded

inside other expressions. <cexp> correspond
to expressions that can be embedded into each
other recursively. (C-exp stands for Constituent
expressions - that is, expressions which can
occur as components of a larger expression.)

143/143

