
Principles of Programming Languages
Logic Programming Interpreter

1/81

Today

We describe an interpreter for Logic
Programming written in Scheme. The

interpreter re-uses many of the tools we
developed when developing interpreters for

Functional Programming (the sequence L1 to L7
we introduced in previous chapters).

2/81

Today

In particular, we reuse directly:

• The Substitution abstract data type
• The Equation abstract data type
• The unification algorithm

3/81

Today

We also implement the abstract syntax for LP
using the same methodology we used for Li - as

a disjoint union type of expression types.

4/81

Today

The new part of the LP interpreter is the
implementation of the answer-query

algorithm. Recall that the answer-query
relies on two key ingredients:

• Unification
• The construction of a proof-tree given a
program and a query.

5/81

Today

We describe the proof-tree construction
algorithm through the usage of a data type we
call lazy tree which is a generalization of the
lazy list we introduced in Chapter 4 to the case

of a possibly infinite tree.

6/81

Architecture of the Logic Programming Interpreter

The overall system architecture is given in the
following architecture diagram:

7/81

Architecture of the Logic Programming Interpreter

8/81

Architecture of the Logic Programming Interpreter

1. Syntax: This layer includes, so far, only an
abstract syntax module LP-AST, which
defines a convenient interface to all
syntactic elements in an LP program.

2. ADTs: The LP related ADTs are Substitution
and Term-Equation, which are used for
implementing a unification operation in
Unify.

9/81

Architecture of the Logic Programming Interpreter

3. lazy-tree-ADT represents an n-ary labeled
tree (has labels on internal nodes), whose
depth might be infinite. The constructor of
lazy trees wraps the child-branches of a
node with a lambda abstraction that
enables laziness: it delays the construction
of children nodes until requested.

10/81

Architecture of the Logic Programming Interpreter

4. LP-solver: The Answer-Query module,
defines the LP Gsel and Rsel, and the
algorithm for proof-tree construction and
search.

11/81

Scheme Programming Style

We implement this interpreter in Scheme. The
programming style we use is extremely close to

the one we used in TypeScript:

12/81

Scheme Programming Style

• Data types are implemented as functional
interfaces with a value constructor, type
predicate and accessors. We do not use
type annotations and type inference - but
take care to describe the data structures we
use as disjoint union types.

• The naming convention we use for
constructors are make-TYPE, type predicate
is TYPE?, type accessors are functions
named TYPE->FIELDNAME.

13/81

Scheme Programming Style

• Disjoint union types are defined only by a
type predicate - as was the case in
TypeScript - for example:
;; Term: Symbol | Number | Variable | Compound-term

;; Signature: term?(x)
;; Type: [T -> Boolean]
;; Purpose: Type predicate for terms
;; Pre-conditions: -
(define term?
(lambda (x)
(or (symbol? x)

(number? x)
(variable? x)
(compound-term? x))))

14/81

Scheme Programming Style

• The structure of the recursive functions that
traverse AST values follows the structure of
the AST datatypes. The typical structure of
the functions that we have used in
TypeScript such as:
const typeTraversal = (x: TYPE): T =>
isSubTYPE1(x) ? do1(x) :
isSubTYPE2(x) ? do2(x) :
do3(x);

15/81

Scheme Programming Style

• ...is implemented in Scheme as:
(define type-traversal
(lambda (x)
(cond ((sub-type1? x) (do1 x))

((sub-type2? x) (do2 x))
(else (do3 x)))))

16/81

Scheme Programming Style

• We use in general Scheme lists instead of
TypeScript arrays and Scheme symbols
instead of TypeScript strings.

17/81

Error Handling

We simplify error handling in the interpreter by
using exceptions in Scheme. Exceptions are
thrown in Racket using the error primitive -
which interrupts the current code and returns
to the toplevel execution with an error value.

18/81

Error Handling

For example:
(define program->procedure
(lambda (program predicate)

(let ((procedure (assoc predicate program)))
(if procedure

procedure
(error 'program->procedure

"Program does not include predicate ~s"
predicate)))))

19/81

LP Abstract Syntax

To simplify the code of the interpreter, we do
not implement tagged disjoint types the way we
did in TypeScript. We also do not implement a
parser / unparser to read logic programs in

concrete syntax and convert them to their AST
representation. Instead, we use a readable

S-exp-based AST encoding.

20/81

LP Abstract Syntax

In this approach, a programs is represented as
a list of the abstract representations of its
procedures. Note that this list actually

represents a set.

21/81

LP Abstract Syntax

For example, the program:
append([], Xs, Xs).
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

member(X, Ys) :- append(Zs, [X|Xs], Ys).

22/81

LP Abstract Syntax

is represented as the list:
(((append 3)

(0 ((append empty (var Xs) (var Xs))
true))

(1 ((append (cons (var X) (var Xs))
(var Ys)
(cons (var X) (var Zs)))

(append (var Xs) (var Ys) (var Zs)))))

((member 2)
(0 ((member (var X) (var Ys))

(append (var Zs)
(cons (var X) (var Xs))
(var Ys)))))

23/81

LP Abstract Syntax

Note the following conventions in this encoding:

24/81

LP Abstract Syntax

• A program is encoded as a list of
procedures.

25/81

LP Abstract Syntax

• Each procedure is encoded as a list:
• starting with the (predicate arity)
tag - for example append/3 is encoded
as (append 3) and member/2 is
encoded as (member 2).

• Then a list of clauses (rules or facts).
• Facts are encoded as rules with a body
containing only the true atomic
formula - so that all clauses are
represented as rules.

• Rules are numbered, starting at 0. 26/81

LP Abstract Syntax

• Rules are represented as a list
(<number> (<head> . <body>)) within
each procedure.

• An atomic formula pred(arg1, arg2) is
represented as (pred arg1 arg2).

27/81

LP Abstract Syntax

• Terms are represented as:
• Constants as Scheme constants (symbol
or number)

• Variables as a pair (var <Varname>)
• Composite terms
functor(arg1, arg2) as
(functor arg1 arg2) (In particular,
lists are represented as nested cons
terms)

28/81

LP-AST Functional Interface

• Program (list of procedures):
(make-program procedures-set)
(program->predicates program)
(program->procedure program predicate)
(program->procedure->numbered-rules program

predicate)
(program->procedure->rule program

predicate
number)

29/81

LP-AST Functional Interface

• procedure (a list of rules with heads for the
same pred/n):
(make-procedure rules)
(procedure->predicate procedure)
(procedure->numbered-rules procedure)

30/81

LP-AST Functional Interface

• rule:
(make-rule head body)
(rule->head rule)
(rule->body rule)

31/81

LP-AST Functional Interface

• atomic-formula:
(make-predication predicate terms)

32/81

LP-AST Functional Interface

• variable:
(make-variable name)
(variable->name var)
(rename-variable var number)

33/81

LP-AST Functional Interface

• compound term:
(make-compound-term functor terms)

34/81

LP-AST Functional Interface

• query:
(make-query atomic-formulas)
(query->goals query)

35/81

Variables Representation and Access

A frequent operation in the interpreter consists
of retrieving a rule from a program, and
renaming all the variables in the rule. To
facilitate this operation, variables can be

encoded in two ways:

36/81

Variables Representation and Access

• Regular variable, as read from the program.
• Renamed variable - a variable annotated
with a version number (which according to
our convention corresponds to the layer of
the proof-tree as we expand it
breadth-first).

37/81

Variables Representation and Access

For example, the rule:
member(X, Ys) :- append(Zs, [X|Xs], Ys).

is encoded originally as follows (within the
member/2 procedure):

((member (var X) (var Ys))
(append (var Zs)

(cons (var X) (var Xs))
(var Ys)))

38/81

Variables Representation and Access

When this rule is retrieved from the program
(using the Rsel procedure) - it will be renamed

as:
((member (var X 1) (var Ys 1))
(append (var Zs 1)

(cons (var X 1) (var Xs 1))
(var Ys 1)))

and the variable counter (1) will be
incremented each time the rule is retrieved.

39/81

Variables Representation and Access

To support the renaming operation, each
compound AST type has a method that

computes the list of variable terms it contains.

• rule->vars
• atomic-formula->vars
• predication->vars
• term->vars
• query->vars

40/81

Variables Representation and Access

All of these return a list of variables without
repetition.

41/81

Substitutions ADT

The Substitution ADT is a direct adaptation of
the substitution-ADT module from the type
inference system we saw in Chapter 3. It is
translated in Scheme and adapted to the
datatypes of LP: a substitution is a finite
mapping from Variable to Term with

occurs-check.

42/81

Substitutions ADT

The ADT consists of:

• Constructor: make-sub(variables,
terms), which also checks for circularity
(occurs-check).

• Getters: sub->variables, sub->terms,
sub->get-var(sub,var) which returns
the value of var, if defined, or error
otherwise.

• Predicates: sub?, empty-sub?,
non-empty-sub?, sub-equal?

43/81

Substitutions ADT

Operations:

• extend-sub(sub, var, term) which
extends sub with the binding var = term

• Application of a substitution to LP terms,
atomic formulas and queries:
sub-apply(sub, term)

• Restriction of a substitution:
sub-restrict(sub, vars)

• Substitution combination:
sub-combine(sub1, sub2)

44/81

Substitutions ADT

Examples:
;; {T7 = Number, T8 = f(m(T5, Number), T3)}
;; o {T5 = T7, T8 = Boolean}
;; => {T5 = T7, T7 = Number, T8 = f(m(T7, Number), T3)}

(define sub1
(make-sub '((var T7) (var T8))

'(Number (f (m (var T5) Number) (var T3)))))
(define sub2
(make-sub '((var T5) (var T8))

'((var T7) Boolean)))

(sub-combine sub1 sub2)
;; '(sub ((var T5) (var T7) (var T8))

((var T7) Number (f (m (var T7) Number) (var T3))))

45/81

Substitutions ADT

Examples:
;; f(X) o {X = 1} => f(1)
(sub-apply (make-sub '((var X)) '(1))

(make-compound-term 'f '((var X))))
;; '(f 1)

46/81

Terms Equations ADT

The unifier is implemented as a term equations
solver - that is, to unify 2 atomic-formulas, we
split the atomic-formulas into a sequence of
equations which pair the terms of each atomic

formula one by one, and then solve the
equations iteratively. When complex terms are

met, they are split into more equations.

47/81

Terms Equations ADT

The Terms Equations ADT is just a pair data
structure for two terms:

• Constructor:
make-equation(term1, term2)

• Getters: equation->left,
equation->right

• Predicates: equation?

48/81

Unify

The unification operation operates over atomic
formulas and terms. This is an adaptation of
the solve module from the type inference
system. The unification algorithm uses the

equation solving method:

49/81

Unify

1. For atomic elements – either compares if
equal, different, or can create a substitution
(non-circular);

2. For compound arguments with the same
predicate or functor and the same arity,
creates equations from corresponding
elements, and repeats unification.

3. Main procedure: unify-formulas

50/81

Unify

4. Equation solvers:
solve-equations(equation-list),
solve(equations, substitution)

5. Helpers:
unifiable-structure(equation),
split-equation(equation)

51/81

Lazy-Tree-ADT

A lazy tree is represented as a lazy tree-list
whose head is the root-node and whose tail is

a regular list of lazy-trees:
(root (lambda () (list lzt1 lzt2 ... lztn)))

52/81

Lazy-Tree-ADT

This is a lazy representation for labeled trees
with finite branching, but possibly infinite

depth.

53/81

Lazy-Tree-ADT

• empty-lzt represents the empty lazy-tree
• A leaf is represented by:
(root (lambda () empty-lzt))

54/81

Lazy-Tree-ADT

The ADT consists of:

• Constructors: make-lzt, make-lzt-leaf,
empty-lzt,
expand-lzt(node, node-expander).

• Getters: lzt->root, leaf-data,
lzt->branches, lzt->first-branch,
lzt->rest-branches,
lzt->take-branches(lzt, n),
lzt->nth-level(lzt, n)

55/81

Lazy-Tree-ADT

The ADT consists of:

• Predicates: empty-lzt?, lzt?,
composite-lzt?

56/81

Lazy-Tree-ADT

The key operation to understand is
expand-lzt:

(define expand-lzt
(lambda (root node-expander)

(let ((child-nodes (node-expander root)))
(make-lzt root
(lambda ()
(map (lambda (node)

(expand-lzt node node-expander))
child-nodes))))))

57/81

Lazy-Tree-ADT

expand-lzt is the natural way to construct
lazy trees. Consider the following example of a

finite lazy tree:
(define ft01

(expand-lzt '()
(lambda (node)

(if (> (length node) 2)
empty-lzt
(map (lambda (n) (cons n node))

'(0 1))))))

58/81

Lazy-Tree-ADT

• The nodes in this lazy tree are labeled with
a list of numbers (0 or 1).

• The root contains a list of length 0.
• The children of a node are of the form
(0 . parent) and (1 . parent)

• When a node has a label with length 3, it
has no children.

59/81

Lazy-Tree-ADT

If we print all the node labels in this tree, we
obtain:

'(()
((0) ((0 0) ((0 0 0)) ((1 0 0))) ((1 0) ((0 1 0)) ((1 1 0))))
((1) ((0 1) ((0 0 1)) ((1 0 1))) ((1 1) ((0 1 1)) ((1 1 1)))))

60/81

Lazy-Tree-ADT

Which translates to:
()

(0)

(0 0)

(0 0 0) (1 0 0)

(1 0)

(0 1 0) (1 1 0)

(1)

(0 1)

(0 0 1) (1 0 1)

(1 1)

(0 1 1) (1 1 1)

61/81

Lazy-Tree-ADT

expand-lzt describes a tree by providing a
function that computes the direct children
given a root node. Given this function,
expand-lzt produces a lazy tree which

generates the nodes level by level.

62/81

Lazy-Tree-ADT

This method can be used to produce infinite
trees naturally. Consider the following simple

variation:

(define it01
(expand-lzt '()
(lambda (node)

(map (lambda (n) (cons n node))
'(0 1)))))

63/81

LZT Operations

There are three procedures for scanning a lazy
tree:

64/81

LZT Operations

lzt-filter(lzt, filterP) – returns a list
of nodes that satisfy the filter predicate; does

not terminate on infinite lazy trees.

65/81

LZT Operations

(define lzt-filter
(lambda (lzt filterP)

(letrec ((collect
(lambda (lzt)

(let ((children (flatmap collect
(lzt->branches lzt))))

(if (filterP (lzt->root lzt))
(cons (lzt->root lzt) children)
children)))))

(if (empty-lzt? lzt)
empty
(collect lzt)))))

66/81

LZT Operations

lzt-find-first(lzt, filterP) – returns
the first node that satisfies the filter predicate.
Might not terminate for infinite lazy trees (if the

path to the first success node is infinite).

67/81

LZT Operations

lzt-filter->lzl(lzt, filterP) –
returns a lazy list of all nodes that satisfy the

filter predicate.

68/81

LZT Operations

> (lzt-find-first it01 (lambda (node) (> (length node) 4)))
'(0 0 0 0 0)

> (lzt-filter it01 (lambda (node) (< (length node) 4)))
--> Infinite loop

> (lzt-filter->lzl it01 (lambda (node) (= (length node) 4)))
--> A lazy list which returns 16 elements then loops forever

69/81

answer-query Algorithm

We are now ready to review the implementation
of the answer-query algorithm in the LP
Interpreter: The main functions of the
answer-query.rkt module are:

• answer-query, which has two variants:
answer-query-first and
answer-query-lzl

• LP-node-expander, expand-query
• Gsel, Rsel

70/81

answer-query Algorithm

answer-query creates a proof tree as a lazy
tree, whose nodes are labeled by a list of query

and substitution. The substitution is the
combination of all substitutions on the tree

branches.

71/81

answer-query Algorithm

The nodes of the proof tree are defined in the
data structure PT-node, with the getters:

• PT-node->query
• PT-node->sub

72/81

answer-query Algorithm

The proof tree is created using the
expand-lzt constructor of lazy trees, using
the procedure LP-node-expander, which

performs the main actions of the LP interpreter:

73/81

answer-query Algorithm

1. Applying Gsel on the query.
2. Applying Rsel on the selected goal.
3. Creating the new queries for the child node.
4. Creating the new combined substitutions

for the child nodes.

74/81

answer-query Algorithm

The code for LP-node-expander can be
found here.

75/81

https://github.com/bguppl/interpreters/blob/master/src/logic/answer-query.rkt#L105

answer-query Algorithm

The key functions of Gsel and Rsel rely on the
ADTs for queries and rules defined in the AST.

76/81

answer-query Algorithm

The key functions of Gsel and Rsel rely on the
ADTs for queries and rules defined in the AST.

Code can be found here.

77/81

https://github.com/bguppl/interpreters/blob/master/src/logic/answer-query.rkt#L147

answer-query Algorithm

Observe that Rsel performs renaming of the
rules when they are retrieved from the

program. This is made easy by the encoding of
renamed-variables as (var X <n>) and by
the accessors rule->vars defined in the AST

module.

The code for rename-rule can be found here.

78/81

https://github.com/bguppl/interpreters/blob/master/src/logic/LP-rename.rkt#L36

Computing Answers Given a Proof-Tree

Eventually, given a lazy-tree data structure
representing a proof-tree, we read off the

answers to a query by producing a lazy-list of
substitutions:

79/81

Computing Answers Given a Proof-Tree

• The proof-tree is started using a root node
with the query and an empty substitution

• answer-query expands the tree into a lazy
tree representing the full proof-tree

• We extract from the proof-tree the success
leaves, and for each one, read the
substitution associated to the leaf and
project it to keep only the variables that
were present in the query.

80/81

Computing Answers Given a Proof-Tree

The code for answer-query,
answer-query-first and

answer-query-lzl can be found here.

81/81

https://github.com/bguppl/interpreters/blob/master/src/logic/answer-query.rkt#L45

