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Introduction

Logic Programming (LP) is one of the three
major programming paradigms - in addition to
procedural and functional programming. It

emerged in the 1970s, from the work of Kowalski
and Colmerauer in automatic theorem proving.
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Introduction

Usually, a logical axiom H← B1 ∧ B2 ∧ . . . ∧ Bn
can be interpreted in a logical declarative

manner: When B1 and ... and Bn are true, then H
is also true.
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Introduction

The first key observation at the basis of the
logic programming paradigm is to read such a
logical statement in a procedural manner: In
order to prove that H is true, you must prove

that B1 and ... and Bn are true. The basic step in
this procedural reading is the step of proving

that a predicate Bi is true.
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Introduction

The second key observation in LP is that
quantified variables in a logical statement such
as the following: ∀x ∈ R, ∃y ∈ R, p(x, y)→ q(y)

can be understood as the parameters of
procedures, passing information into the

procedure.
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Introduction

In this chapter, we introduce Logic Programming
- first as users of the Prolog language, then as
implementers of an interpreter for Prolog. We
use the same methodology we employed when
implementing an interpreter for a functional
language: define the abstract syntax and the

operational semantics of the language.
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Introduction

Even though the language we implement feels
very different from those we studied earlier, we

discover that the same tools appear in the
description of its operational semantics as
those we introduced in earlier chapters:

substitution, unification and lazy evaluation.
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Introduction

In our implementation of a Logic Programming
interpreter, we reuse much of the tools we
developed when implementing a functional
language interpreter and the type inference

system.
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Three Subsets of Logic Programming

We define three subsets of different complexity
in the LP domain:
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Three Subsets of Logic Programming

• Relational LP (also called Datalog)
• Pure Prolog - including recursive data
structures (called functors in Prolog).

• Full Prolog - including types, arithmetic,
introspection primitives, backtracking
control with the cut operator and
self-modifying code.
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Three Subsets of Logic Programming

We review in the course the first two subsets of
Prolog.
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Logic Programming as a Programming Language

The way we have described programming
languages since the beginning of the course is

to identify:
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Logic Programming as a Programming Language

• The syntax (concrete and abstract) of the
language
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Logic Programming as a Programming Language

• The operational semantics of the language
which consists of the specification of the
values computed by the language and the
specification of the mapping from
expressions to values as a structural
inductive process.
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Logic Programming as a Programming Language

• A set of primitive operations and primitive
data types - which can be combined
through the syntax of the language into
compound operations (procedures) and
compound data types.
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Logic Programming as a Programming Language

In the case of Logic Programming, the following
key decisions specify the programming

language:
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Logic Programming as a Programming Language

• Syntax: a restricted subset of predicate
calculus: A logic program is a set of
formulas (classified into rules and facts),
with a single head and only conjunction on
the right-hand-side, defining known
relationships in the problem domain.
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Logic Programming as a Programming Language

• Semantics: the computed values are sets of
answers to queries:
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Logic Programming as a Programming Language

• A program is triggered by invoking a goal
(query) logic statement.

• The goal might include variables.
• The computed values are sets of answers to
goal queries. If a goal includes variables, the
answers are substitutions (instantiations)
for the variables in the query. Else the
answers are true/false values.
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Logic Programming as a Programming Language

• Operational semantics: Program execution
is an attempt to prove a goal statement.
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Logic Programming as a Programming Language

• The proof tries to instantiate the variables
(provide values for the variables), such that
the goal becomes true.

• A computation of a logic program consists
of exploring the consequences of the
program, in order to reach the given goal.
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Logic Programming as a Programming Language

• The operational semantics is a proof
algorithm: It is based on two essential
mechanisms:
• Unification: The mechanism for
parameter passing.

• Backtracking: The mechanism for
searching for a proof within the set of all
consequences of the program.
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Logic Programming as a Programming Language

• Primitives:
• In relational LP and pure LP, primitive
expressions include predicates (which
are characterized by a symbol) and
symbols which can be compared through
unification (meaning an equality
operator between symbols is defined).
Two predefined values - true and
false - are also defined. They are
returned when a goal with no variables
is executed. 23/162



Logic Programming as a Programming Language

• Primitives:
• In Pure Prolog, the set of expressions is
extended with functors, which can be
nested recursively. Variables can be
bound to either symbols or functors. A
computed value is either the true/false
primitive value, or a set of substitutions
mapping variables to symbols or
functors.
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Logic Programming as a Programming Language

• Primitives:
• In Full Prolog, primitive types are
extended with numbers and strings and
corresponding primitive operations to
manipulate them (arithmetic, string
operations). In addition, primitive
procedures are introduced to explicitly
manipulate programs at runtime.
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Relational Logic Programming



Syntax

The expressions in RLP include:

26/162



Syntax

Atomic expressions:
• Terms

• Symbols - correspond to constants -
start with lowercase

• Variables - symbol starting with
Uppercase or with _

• Predicates - correspond to names of
procedures - start with lowercase
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Syntax

Compound expressions:

• Atomic Formula - expression of the form
predicate(term1, ..., termn)

• Facts - rule containing a single atomic
formula.

• Rules - rule containing: a left-hand-side
with a single atomic-formula and a
right-hand-side which is a list of atomic
formula, interpreted as a conjunction.
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Syntax

Compound expressions:

• Queries - a list of atomic formula.
• Program - a collection of facts and rules.

29/162



Syntax

Here is an example of a program written
according to the Prolog concrete syntax:

parent(abraham, isaac).
parent(isaac, jacob).
parent(sarah, isaac).
parent(jacob, joseph).
male(abraham).
male(isaac).
male(joseph).
female(sarah).
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Syntax

In this program, the symbol parent is a
predicate. It is part of the predicate definition
that it expects two parameters - hence we will
refer to it as parent/2. Similarly, male/1 and

female/1 are also predicates.
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Syntax

The symbols abraham, isaac, jacob, sarah,
joseph are all symbol terms.
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Syntax

The expression parent(abraham, isaac) is
an atomic formula.
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Syntax

The expression parent(abraham, isaac).
(with a dot at the end) is a fact. It is an
assertion that an atomic formula is true.
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Syntax

We run a query on this program in the following
manner:

?- parent(abraham, X).

The query is understood as a question: is there
a value for the variable X which makes the

atomic formula parent(abraham, X) true?
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Syntax

This triggers an execution of the program for
this goal query - where the interpreter tries to

prove the goal.

In this case, the answer set is a set with a single
substitution:

X = isaac.
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Procedures in RLP

A procedure in RLP is defined by providing in
the program a collection of facts and rules for a

given predicate. For example, the following
code defines the mother procedure:

mother(X, Y) :-
parent(X, Y),
female(X).
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Procedures in RLP

This procedure is read as follows:

• For any individuals X and Y, in order to
prove that the relation mother(X,Y)
holds, we must prove that parent(X,Y)
holds and that female(X) holds.

• We call the left-hand side of the rule the
Head, and the right-hand side is the Body of
the procedure.

• We observe that the variables are
universally quantified in this procedure.
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Procedures in RLP

In the previously shown program, the four
following facts define the parent/2 procedure:

parent(abraham, isaac).
parent(isaac, jacob).
parent(sarah, isaac).
parent(jacob, joseph).

39/162



Procedures in RLP

The simplest possible procedure is this:

true.
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Procedures in RLP

This procedure is defined by a single fact, for
the predicate true/0 of no parameters - and
which immediately succeeds when it is invoked.
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Procedures in RLP

Procedures can be defined recursively, as in the
following case:

% Signature: ancestor(Ancestor, Descendant)/2
% Purpose: Ancestor is an ancestor of Descendant.
ancestor(A,D) :- parent(A,D). %1
ancestor(A,D) :- parent(A,P), ancestor(P,D). %2
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Procedures in RLP

This procedure computes the transitive closure
of the parent/2 relation. It is read as follows:
• For any individuals A and D, in order to
prove that the relation ancestor(A, D)
holds, we must prove that:
• Either parent(A, D) holds
• Or there exists an individual P such that
we can prove parent(A, P) holds and
ancestor(P, D) holds.
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Procedures in RLP

Observe the following distinctions:
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Procedures in RLP

• When variables occur in the Head of a
procedure, they are understood to be
universally quantified (∀x, p(x)).

• When a variable occurs only in the Body of a
procedure, it is understood to be
existentially quantified (∃x, q(x)).
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Procedures in RLP

• When the body of procedure contains
multiple atomic formula, we understand the
formula are in conjunction. (Must prove p
and prove q).

• When a procedure contains multiple rules
(for example, rule %1 and rule %2 in the
procedure ancestor), we understand that
the rules form a disjunction. (In order to
prove ancestor(A, D) prove %1 or prove
%2.)
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Procedures in RLP

In terms of programming languages, the scope
of a variable is a single rule. Variables in
different rules are unrelated: Variables are

bound only within a rule. Therefore, variables
in a rule can be consistently renamed (compare

with the Renaming principle in functional
languages for a procedure).
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Procedures in RLP

when we invoke the procedure ancestor/2,
we obtain multiple answers:

?- ancestor(abraham, D).
D = isaac;
D = jacob;
D = joseph;
false;
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Facts are Simple Rules

Facts can be considered as simple rules, where
the body is the true formula. In other words:

male(abraham).

is equivalent to:

male(abraham) :- true.
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Facts are Simple Rules

In terms of operational semantics, a procedure
is an ordered list of rules (or facts).
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Facts are Simple Rules

When trying to prove the head of a procedure,
the different rules are tried in order, and within
each rule, each atomic formula in the body is
proved in order from left to right. (These two
strategies are the default strategy in Prolog -
we will discuss ordering strategies later.)
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Left and Right Recursion

Care must be taken when defining recursive
procedures. Consider the following variant of

the ancestor/2 procedure where we swapped
the two atomic formula in the body of the

second rule. This rule is now left-recursive (as
opposed to the right-recursive case above).
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Left and Right Recursion

This inversion leads to infinite loops in the
proof algorithm:

% ancestor2(Ancestor, Descendant)
ancestor2(A, D) :- parent(A, D).
ancestor2(A, D) :- ancestor2(P, D), parent(A, P).

?- ancestor2(A, isaac).
A = abraham ;
A = sarah ;
% ERROR: Stack limit (1.0Gb) exceeded
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Left and Right Recursion

The difference between the ancestor/2 and
ancestor2/2 procedures is that the first one
is tail-recursive (the recursion occurs in tail

position), whereas the second one is not. This
leads to a blind-search procedure when trying
to find the value of the P variable and to an

infinite loop.
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Queries

A query is a list of atomic formula, which
triggers the execution of a program -

af1, . . . ,afn.
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Queries

A good way to understand the execution of a
query is to read it as follows:

• Given all the facts and rules asserted in a
program

• Can we prove each of the atomic formula in
the query afi
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Queries

When variables occur in a query, their scope is
shared – they are all defined for the whole
execution of the program on this query.

57/162



Queries

Variables are understood as existentially
quantified when they appear in a query - that is

a query:

?- pred(X).

is understood as: “Does a constant value v
exist such that pred(X) o {X = v} can be

proven true.” (Where E o s is the apply
substitution operator over atomic formula.)
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Queries

A query with multiple variables looks for all
substitutions in which the variables hold in the

described relation. For example, given the
program above - the query parent(X, Y)

returns a list of substitutions for the pair X, Y:
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Queries

?- parent(X, Y).
X = abraham,
Y = isaac ;
X = isaac,
Y = jacob ;
X = sarah,
Y = isaac ;
X = jacob,
Y = joseph.
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Queries

A query with multiple atomic formula with
shared variables defines a complex relation.

For example, in the following query, the variable
Y is shared between the two atomic formula.
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Queries

?- parent(X, Y), parent(Y, Z).
X = abraham,
Y = isaac,
Z = jacob ;
X = isaac,
Y = jacob,
Z = joseph ;
X = sarah,
Y = isaac,
Z = jacob ;
false. 62/162



Queries

The query is read as: “find triplets X, Y, Z
where X is the grand-parent, Y the parent, Z the

child.”
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Prolog Syntax

We review the syntax of RLP described above in
an informal manner by introducing its BNF

format and the corresponding abstract syntax.
This syntax corresponds to a subset of the

Prolog programming language.
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Prolog Syntax

The concrete syntax of RLP defines a program
as a non empty set of procedures, each

consisting of an ordered set of rules and facts,
having the same predicate and arity.
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Prolog Syntax

<program> ::= <procedure>+
<procedure ::= (<rule> | <fact>)+ with identical predicate and arity
<rule> ::= <head> ':-' <body> '.'
<fact> ::= <head> '.'
<head> ::= <atomic-formula>
<body> ::= (<atomic-formula> ',')* <atomic-formula>
<atomic-formula> ::= <constant> | <predicate>'('(<term>',')* <term>')'
<predicate> ::= <constant>
<term> ::= <constant> | <variable>
<constant> ::= A string starting with a lower case letter.
<variable> ::= A string starting with an upper case letter.
<query> ::= '?-' (<atomic-formula>',')* <atomic-formula> '.'
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Prolog Syntax

The corresponding abstract syntax specifies the
following AST types:
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Prolog Syntax

Program: {procedures: Procedure[];}
Procedure: {rules: (Rule | Fact)[]; } // at least one rule or fact.
Fact: {head: AtomicFormula;}
Rule: {head: AtomicFormula; body: AtomicFormula[];}
AtomicFormula: {predicate: Constant; terms: Term[];}
Term: Constant | Variable

// string must start with lowercase letter
Constant: {val: string | number;}

// string must start with uppercase letter
Variable: {variable: string;}
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Prolog Syntax

In the spirit of Scheme, Prolog adopts a
minimalistic syntax.
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RLP Operational Semantics

The operational semantics of logic
programming is based on two mechanisms:

• Unification
• Search and backtracking
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Unification for Logic Programming

Unification in Logic Programming is exactly the
same operation as that we discussed in Chapter

3 but applied to atomic formulas and logic
variables instead of type expressions and type
variables. It relies on the exact same definition
of the mathematical object of substitution.
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Unification for Logic Programming

Unification is the operation of making atomic
formulas identical by substituting expressions
for variables. For example, the atomic formulas
p(3, X) and p(Y, 4) can be unified by the

substitution {X = 4, Y = 3}.
Similarly, p(X, 3, X) and p(Y, Z, 4) can

be unified by the substitution:
{X = 4, Z = 3, Y = 4}.
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Formal Definition of Unification

Definition: Substitution
A substitution s in logic programming involves
logic variables as variables and logic terms as
values, such that s(X) ̸= X. A substitution is
applied to atomic formula (and later we will
extend it to rules, facts, procedures and
programs).

A pair ⟨X, s(X)⟩ is called a binding, and written
X = s(X).
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Formal Definition of Unification

Example

{X = 4, Z = 3, U = X} and
{X = 4, Z = 3, U = V} are substitutions.

{X = 4, Z = 3, Y = Y} and
{X = 4, Z = 3, X = Y} are not
substitutions.
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Formal Definition of Unification

Definition: Substitution Application
The application of a substitution s to an
atomic formula A, denoted A ◦ s replaces the
terms for their variables in A. The replacement
is simultaneous.
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Formal Definition of Unification

Example

• p(X, 3, X, W) ◦ {X = 4, Y = 4} =
p(4, 3, 4, W)

• p(X, 3, X, W) ◦ {X = 4, W = 5} =
p(4, 3, 4, 5)

• p(X, 3, X, W) ◦ {X = W, W = X} =
p(W, 3, W, X)
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Formal Definition of Unification

Definition: Instance
An atomic formula A′ is an instance of an
atomic formula A, if there exists a substitution
s such that A′ ◦ s = A.

A is more general than A′ if A′ is an instance of
A.

77/162



Formal Definition of Unification

Example

• p(X, 3, X, W) is more general than
p(4, 3, 4, W), which is more general
than p(4, 3, 4, 5).

• p(X, 3, X, W) is more general than
p(W, 3, W, W), which is more general
than p(5, 3, 5, 5).

• p(X, 3, X, W) is more general than
p(W, 3, W, X), which is more general
than p(X, 3, X, W).
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Formal Definition of Unification

Definition: Unifier
A unifier of atomic formulas A and B is a
substitution s, such that A ◦ s = B ◦ s.
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Formal Definition of Unification

Example
The following substitutions are unifiers of
p(X, 3, X, W) and p(Y, Z, 4, W):
• {X = 4, Z = 3, Y = 4}
• {X = 4, Z = 3, Y = 4, W = 5}
• {X = 4, Z = 3, Y = 4, W = 0}
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Formal Definition of Unification

Definition: Most General Unifier

A most general unifier (mgu) of atomic
formulas A and B is a unifier s of A and B, such
that A ◦ s = B ◦ s is more general than all other
instances of A and B that are obtained by
applying a unifier of A and B.
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Formal Definition of Unification

Definition: Most General Unifier (cont.)
That is, for every unifier s′ of A and B, there
exists a substitution s′′ such that
A ◦ s ◦ s′′ = A ◦ s′.

If A and B are unifiable, they have an mgu
(unique up to renaming).
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Formal Definition of Unification

Example

{X = 4, Z = 3, Y = 4} is an mgu of
p(X, 3, X, W) and p(Y, Z, 4, W).
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Formal Definition of Unification

Definition: Combination of Substitutions
The combination of substitutions s and s′

denoted s ◦ s′, is defined by:

1. s′ is applied to the terms of s, i.e., for every
variable X for which s(X) is defined,
occurrences of variables X′ in s(X) are
replaced by s′(X′).
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Formal Definition of Unification

Definition: Combination of Substitutions (cont.)
2. A variable X for which s(X) is defined, is

removed from the domain of s′, i.e., s′(X) is
not defined on it any more.

3. The modified s′ is added to s.
4. Identity bindings, i.e., s(X) = X, are removed.

85/162



Formal Definition of Unification

Example
{X = Y, Z = 3, U = V} ◦
{Y = 4, W = 5, V = U, Z = X} =
{X = 4, Z = 3, Y = 4, W = 5, V = U}
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Unification Algorithm

The method introduced in Chapter 3 for solving
type equations is a unification algorithm for

any kind of expressions, that computes an mgu.
We repeat this algorithm here, replacing the

types of the objects manipulated to the context
of the AST of logic programming:
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Unification Algorithm

Given atomic formulas A, B they can be unified
following these steps:
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Unification Algorithm

unify(A,B): Substitution | Fail
Initialization: sub: Substitution = {} // Empty substitution

equations: Equation[] = (A = B)
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Unification Algorithm

1. While equations is not empty:
2. Let equation_1 = pop(equations)
3. Let eq'_1 = equation_1 o sub
4. If one side in eq'_1 is a variable X:
4.1 If the other side is not the same variable:

i.e., eq'_1 = {X = term}
4.2 then sub = sub o {X = term}
4.3 else if the other side is the same variable:

i.e., eq'_1 = {X = X}
4.4 continue

90/162



Unification Algorithm

5. else if both sides in eq'_1 are atomic, then:
6. if both sides are the same constant symbol then

continute, else return FAIL.
7. else if the predicate symbols and the number of

arguments, are the same:
eq'_1 = (p(t_1,...,t_n) = p(s_1, ..., s_n)):

8. split eq'_1 into equations:
equations = equation U (t_i = s_i) for i=1..n,
continue.

9. else return FAIL.
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answer-query: An Abstract Interpreter for Logic Programming

The computation of a Prolog program is
triggered by a query. It builds a proof-tree to
establish whether the query holds given the

program. If such a proof-tree can be
constructed, then answers can be read off the

tree, in the form of substitutions.
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answer-query: An Abstract Interpreter for Logic Programming

A query has the following form:
Q = ?- G1, ..., Gn.

93/162



answer-query: An Abstract Interpreter for Logic Programming

The query components are called goals. The
interpreter tries all possible proofs for the
query, and computes a set of answers, i.e.,

substitutions to the variables in the query. Each
answer corresponds to a proof of the query. If
the query cannot be proved, then the set is the

empty set.
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Facts as Rules

To simplify the description of the algorithm, we
note that facts can be treated as rules, whose
body is the single atomic formula true. For

example, the fact r(baz, bar). is equivalent
to the rule: r(baz, bar) :- true.
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Goal and Rule Selection

Each proof is a repeated effort to prove:

• A selected goal
• Using a selected rule
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Goal and Rule Selection

If the selected rule does not lead to a proof, the
next selected rule is tried. This is the

backtracking mechanism of the interpreter. If
no rule leads to a proof, the computation fails.
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Goal and Rule Selection

Rule selection is performed by unification
between the selected goal and the head of the
selected rule. Therefore, the algorithm has two
points of non-deterministic choice: goal and
the rule selections. We will refer below to the

selections of goals and rules with two
procedures Gsel for goal selection Rsel for

rule selection.
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Goal and Rule Selection

Goal selection:
Gsel is a selection function defined on tuples

of goals. That is,
Gsel(G1, . . . ,Gn) = Gi, n ≥ 1, 1 ≤ i ≤ n such

that Gi ̸= true.
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Goal and Rule Selection

Rule selection:
Rsel is a function which for a given goal G and
a program P (a sequence of rules) creates a
sequence of all rule-substitution pairs such

that:

Rsel(G,P) = (⟨R, σ⟩)R∈P,G◦σ=head(R)◦σ
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Goal and Rule Selection

That is, for every rule R ∈ P, if
R = A :- B1, . . . ,Bn, n ≥ 1,

and unify(A, G) = σ succeeds with the
unifying substitution (mgu) σ, then

⟨R, σ⟩ ∈ Rsel(G,P).
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Goal and Rule Selection

For example, let G be parent(X, Y) and P be
our biblical program. Reminder: the relevant
part of the program (after converting the facts

to rules) is:

parent(abraham, isaac) :- true.
parent(isaac, jacob) :- true.
parent(sarah, isaac) :- true.
parent(jacob, joseph) :- true.
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Goal and Rule Selection

Then:
Rsel(parent(X, Y), P) = (

<parent(abraham, isaac) :- true, {X = abraham, Y = isaac}>,
<parent(isaac, jacob) :- true, {X = isaac, Y = jacob}>,
<parent(sarah, isaac) :- true, {X = sarah, Y = isaac}>,
<parent(jacob, joseph) :- true, {X = jacob, Y = joseph}>

)
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Goal and Rule Selection

In Prolog, Gsel and Rsel are defined as
follows:

• Goal selection as the left most goal which is
different from true.

• Rule selection according to the procedure
rule ordering.
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The answer-query Algorithm

The answer-query algorithm builds a proof
tree and then collects the answers from its
leaves. The proof tree is a tree with labeled
nodes and edges. It is defined as follows:
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The answer-query Algorithm

1. The nodes are labeled by queries, with a
marked goal in the query (the selected goal).

2. The edges are labeled by substitutions and
rule numbers.
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The answer-query Algorithm

3. The root node is labeled by the input query
and its selected goal.

4. The child nodes of a node labeled Q with a
marked goal G represent all possible
successive queries, obtained by applying all
possible rules to G. The child nodes are
ordered by Rsel, where the leftmost child
corresponds to the first selected rule.
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The answer-query Algorithm

The tree operations used in the proof-tree
algorithm are:

1. Constructors:
• make_node(label): Creates a node
labeled label (labels in our case are
collections of Atomic Formulas).

• add_branch(tree, edge_label,
branch): Adds branch as a right branch
to the root node of tree, with an edge
labeled by edge_label.
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The answer-query Algorithm

2. Accessors:
• label(node) selects the label of node.
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Proof Tree Example
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Proof Tree Example

• Each node contains a query
• Each edge is labeled by a reference to a rule
(or fact) and a substitution.

• Leaves are nodes that cannot be expanded
anymore (in general, they correspond to the
atomic formula true or false).

• Answers are read off this tree by collecting
the substitutions from the leaves marked as
true and up to the root.
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The answer-query Algorithm

The answer-query algorithm:
answer-query(Q, P, Gsel, Rsel)
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The answer-query Algorithm

Input:

• Q: Query = ?- G1, ..., Gn, where
Gi, i = 1 . . .n are atomic formula

• P: Program, with numbered rules
(denoted by number(R))

• A goal selection rule Gsel
• A rule selection rule Rsel
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The answer-query Algorithm

Output: A set of substitutions for variables of Q
(not necessarily for all variables).
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The answer-query Algorithm

Method:

1. answers = {}
2. PT = proof-tree(make_node(Q))
3. Return {s | s ∈ answers|Q(PT)}, where
answers|Q computes the restriction of the
substitutions read out in the proof tree
leaves to the variables of Q.
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The answer-query Algorithm

answer-query can return the following types
of results:
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The answer-query Algorithm

1. An empty set answer (no substitutions)
marks a failure of the interpreter to find a
proof.

2. An answer with empty substitutions marks
success proofs with no variables to
substitute (e.g., when the query is ground).

3. An answer with non-empty substitutions
marks success proofs that require
substitutions to the query variables.
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The answer-query Algorithm

Procedure proof-tree(node): node is a tree
node with label query, which is an ordered list

of atomic formulas, called goals.

Input: A tree node node
Output: A proof tree rooted in node
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The answer-query Algorithm

Method:
1. If label(node) is ?- true, ..., true
then:
1.1 Mark node as success node (leaf). A

success backtracking point.
1.2 answers = answers ∪ {s1 ◦ s2
◦, . . . , ◦ sn}, where s1, . . ., sn are the
substitution labels of the path from the
tree root to the node. Mark node with
this substitution.
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The answer-query Algorithm

Method:
2. else:

2.1 Goal selection: G =
Gsel(label(node)). G ̸= true since
Gsel does not select a true goal.

2.2 Variables renaming: Rename variables in
every rule and fact of P

2.3 Rule selection: rules = Rsel(G, P)
= (⟨R, σ⟩) s.t. R ∈ P, G ◦ σ = head(R) ◦ σ

2.4 apply-rules(node, G, rules)
120/162



The answer-query Algorithm

Procedure apply-rules(node, G, rules)
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The answer-query Algorithm

Input:

• node is the root-node of a proof-tree, with
label query, which is a tuple of atomic
formulas

• G is an atomic formula (̸= true) included in
a query

• rules is a sequence of rule-substitution
pairs (⟨R, σ⟩)R∈P,G◦σ=head(R)◦σ
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The answer-query Algorithm

Output:
The proof tree rooted in node, extended with
proof-trees created by the application of the

rules in rules to the selected goal G.
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The answer-query Algorithm

Method:
if empty?(rules) then

output = node, // the tree rooted at node.
This is a failure backtracking point.

else let ⟨R, σ⟩ = first(rules):
1. new_query = replace(label(node), G, body(R))◦σ
2. New query expansion:

add_branch(node,
⟨σ,number(R)⟩,
proof-tree(make_node(new_query)))

3. Application of other selected rules:
apply-rules(node, G, tail(rules))
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The answer-query Algorithm

replace(label(node), G, body(R)) is
defined as:

if label(node) = G1, ..., Gn, G = Gi,
and

body(R) = B1, ... Bm then

new_query = G1, ..., Gi-1, B1, ...,
Bm, Gi+1, ... Gn
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The answer-query Algorithm

In the rename step, the variables in the rules
are renamed by new names. This way the
program variables in every binding step are

different from previous steps. Since variables in
rules are bound procedure variables they can
be freely renamed. By convention, in every

recursive call, increase some auxiliary counter,
such that variables X, Y,... are renamed as
X1, Y1,... at the first level, X2, Y2,... at

the second level, etc.
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The answer-query Algorithm

When computing substitutions in Rsel: prefer
to produce substitutions of the form

{Vargoal = Varhead} instead of the opposite.
This way the query variables are kept in the
substitutions produced in a proof branch.
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Types of Proof Trees

• A path from the root in the proof tree
corresponds to a computation of
answer-query.

• A finite root-to-leaf path with a leaf marked
Success is a successful computation path.

• A tree with a successful computation path is
a success tree.

• A successful computation path corresponds
to a successful computation of
answer-query.
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Types of Proof Trees

Definition: Provable Query
A query Q is provable from a program P,
denoted P ⊢ Q, iff for some goal and rule
selection rules Gsel and Rsel, the proof tree
algorithm for
answer-query(Q, P, Gsel, Rsel)
computes a success tree.
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Types of Proof Trees

A finite root-to-leaf path with a non Success
marked leaf is a finite-failure computation

path.
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Types of Proof Trees

A proof tree where all the paths are failed
computation paths is a (finite) failure tree.
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Types of Proof Trees

An infinite computation path is an infinite path.
Infinite computations can be created by

recursive rules (direct or indirect recursion).
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Types of Proof Trees

Significant kinds of proof trees:

• Finite success proof tree: A finite tree with a
successful path.

• (Finite) failure proof tree: A finite tree with
no successful path.
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Types of Proof Trees

• Infinite success proof tree: An infinite tree
with a successful path. In this case it is
important not to explore an infinite path. In
Prolog: Tail recursion is safe, while left
recursion is dangerous.

• Infinite failure proof tree: An infinite tree
with no successful path. Dangerous to
explore.
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Types of Proof Trees

The example proof tree is a finite success tree.
We read the answer off this tree for each

successful computation path:
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Types of Proof Trees

• Left path: {S=X1, Y1=jacob} ◦
{X1=joseph}, which is the substitution
{X1=joseph, Y1=jacob, S=joseph}.
The restriction to the query variables yields
the single substitution: {S=joseph}.
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Types of Proof Trees

• Middle path: {S=X1, Y1=jacob} ◦
{X1=dan}, which is the substitution
{X1=dan, Y1=jacob, S=dan}. The
restriction to the query variables yields the
single substitution: {S=dan}.
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Types of Proof Trees

• Right path: is a failure path, hence no
answer is found.
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Types of Proof Trees

The resulting answer set of the computation is:
{{S=joseph}, {S=dan}}.
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Properties of the answer-query Algorithm

1. Proof tree uniqueness: The proof tree for a
given query and a given program is unique,
for all goal and rule selection procedures
(up to sibling ordering). As a consequence:
the set of answers is independent of the
concrete selection procedures for goals and
rules (Gsel and Rsel).
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Properties of the answer-query Algorithm

2. Performance: Goal and rule selection
decisions have impact on performance.
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Properties of the answer-query Algorithm

• The rules of a procedure should be ordered
according to the rule selection procedure.
Otherwise, the computation might get stuck
in an infinite path, or try multiple failed
computation paths.
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Properties of the answer-query Algorithm

• The atomic formulas in a rule body should
be ordered according to the goal selection
procedure.

• As an example, consider the case of
ancestor/2 and ancestor2/2 discussed
above. They only differ in terms of goal
selection.
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Properties of the answer-query Algorithm

3. Soundness and completeness:
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Properties of the answer-query Algorithm

Definition: Logical Implication
A query Q is logically implied from a program
P, denoted P � Q, if Q is true whenever the
program P is true.
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Properties of the answer-query Algorithm

• Completeness: P � Q implies P ⊢ Q. That is,
if a query is logically implied from a
program, then it is also provable by
answer-query.

• Soundness: P ⊢ Q implies P � Q. That is, if a
query is provable by answer-query, then
it is logically implied from the program.
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Properties of Relational Logic Programming

Decidability:
Given a program P and a query Q, the problem

“Is Q provable from P”, denoted P ⊢ Q, is
decidable.
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Properties of Relational Logic Programming

Proof:
The proof tree consists of nodes that are

labeled by queries, i.e., sequences of atomic
formulas. The atomic formulas consist of

predicate and individual constant symbols that
occur in the program and the query, and from

variables.
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Properties of Relational Logic Programming

Therefore, (1) the number of atomic formulas is
finite, up to variable renaming, and (2) the

number of different selected goals in queries
on a path is finite (up to variable renaming).
Consequently, every path in the proof tree can
be decided to be a success, a failure or an

infinite computation path.
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Properties of Relational Logic Programming

Note that all general purpose programming
languages are only partially decidable (the
halting problem). Therefore, relational logic

programming is less expressive than a general
purpose programming language.
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Relational Logic Programming and SQL Operations

How useful is the relational logic programming
we just defined?
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Relational Logic Programming and SQL Operations

We just saw that its semantics is decidable -
meaning it is strictly less expressive than the L2
functional language we defined in Chapter 2.
Can it still express interesting programs?
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Relational Logic Programming and SQL Operations

Relational logic programming is the basis for
the Datalog language, which is a logic based
language for database processing. Datalog is
relational logic programming + arithmetic +

negation + some database related restrictions.
The operational semantics of Datalog is defined

in a different way (bottom up semantics).
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Relational Logic Programming and SQL Operations

Datalog is more expressive than SQL. The
relational algebra operations include: Union,
Cartesian product, difference, projection,

selection, and join. These can all be
implemented in relational logic programming.
In addition, recursive rules (like computing the

transitive closure of a relation) cannot be
expressed in SQL (at least not in the traditional

SQL) but can be computed in RLP.
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Relational Logic Programming and SQL Operations

The following schema illustrates how relational
algebra operations are modeled in RLP:
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Relational Logic Programming and SQL Operations

Union:
r_union_s(X1, ..., Xn) :- r(X1, ..., Xn).
r_union_s(X1, ..., Xn) :- s(X1, ..., Xn).
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Relational Logic Programming and SQL Operations

Cartesian product:
r_X_s(X1, ..., Xn, Y1, ..., Ym) :-

r(X1, ..., Xn ),
s(Y1, ..., Ym).
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Relational Logic Programming and SQL Operations

Projection:
r1(X1, X3) :- r(X1, X2, X3).
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Relational Logic Programming and SQL Operations

Selection:
r1(X1,X2, X3) :- r(X1, X2, X3), X2 \= X3.
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Relational Logic Programming and SQL Operations

Natural Join:
r_join_s(X1, ..., Xn, X, Y1, ..., Ym) :-

r(X1, ..., Xn, X ),
s(X, Y1, ..., Ym).
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Relational Logic Programming and SQL Operations

Intersection:
r_meets_s(X1, ..., Xn) :-

r(X1, ..., Xn ),
s(X1, ..., Xm).
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Relational Logic Programming and SQL Operations

Transitive closure of a binary relation r:
tr_r(X, Y) :- r(X, Y).
tr_r(X, Y) :- r(X, Z), tr_r(Z, Y).
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