
Text-to-SQL Parsing: Using Execution Plans as an
Intermediate Language

Thesis submitted in partial fulfillment
of the requirements for the degree of

“DOCTOR OF PHILOSOPHY”

by

Ben Eyal

Submitted to the Senate of Ben-Gurion University
of the Negev

January 31, 2024

Beer-Sheva



This work was carried out under the supervision of Prof. Michael Elhadad

In the Department of Computer Science

Faculty of Natural Sciences



Acknowledgements

I would like to thank the people without whom this thesis would not have
been possible because, in the end, it’s not the thesis; it’s the friends we made
along the way.

First and foremost, I want to thank my advisor and friend, Prof. Michael
Elhadad, whose guidance was a beacon of light in this journey called a Ph.D.
Always calm, always caring, always there when it means the most, with the
smile that says “Don’t worry, you got this.” I am glad I had the opportunity
to teach alongside you and put the “fun” back into “functional programming”,
for every Zoom session or phone call, which I always enjoyed.

A huge “thank you” goes to Meni Adler and Yael Netzer, my eternal lab
mates, and to Yaron Gonen, an honorary lab mate, who supported me at
every step and listened to my ramblings. Shnaim Ohazin was (and still is)
one of the best hours of the week.

Thank you to my research buddies, Moran Mahabi, Ophir Haroche, and Amir
Bachar, who have seen so much QPL by now that they can write a query
in the middle of the night. I wish them good luck in their Master’s degrees
and, hopefully, future Ph.D.s.

i



To my friends and co-workers at AI2 Israel: Yoav, Ron, Smadar, Micah,
Hillel, Menny, Aryeh, Sigal, Mark, and Dan, thank you for being there for me
through all the deadlines and the time I needed to see this journey through,
and for letting me enjoy waking up every day for work.

To my parents, Carmi and Ori, who kept believing in me even when I lost
belief in myself, pushing me to finish what I started, thank you for the kind
and uplifting words when I needed them most. You’re the best.

Last but not least, I want to thank my life partner and one true love, Gali,
for staying with me through thick and thin, for long days and sleepless nights
of writing, experiments, successes, breakdowns, and everything in between.
I could not have done this without your support, words, and deeds.

ii



Abstract

The Text-to-SQL task constitutes a significant domain within natural lan-
guage processing (NLP) research and has garnered considerable scholarly
attention due to its profound implications for human-computer interaction
and database management. This task entails the conversion of natural lan-
guage questions into structured SQL (Structured Query Language) queries,
thereby facilitating seamless communication between non-technical users and
relational databases. This task is important because databases are ubiqui-
tous in modern applications, and text-to-SQL models democratize access to
data repositories.

Beyond its practical importance, text-to-SQL is also a useful task theoreti-
cally as it allows probing the performance of NLP models in language under-
standing. The user of a text-to-SQL model can analyze the resulting SQL
and verify the expected properties of the query given the question, such as
the presence of certain schema items or joins, in addition to checking whether
the denotation (the result of running the query) is correct.

In this work, we answer the following research questions: (1) how to make
semantic parsing, specifically text-to-SQL, more compositional; (2) how to
make the output of a semantic parser more interpretable to its users; (3) how
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to make a semantic parser more robust to linguistic variability in the input
questions.

Our first contribution introduces Query Plan Language (QPL), a novel method-
ology in text-to-SQL parsing by employing execution plans as an interme-
diary language to test the hypothesis that a modular target language leads
to more compositional learning. The implementation of QPL as an inter-
mediate step offers an enhanced method for interpreting user queries and
generating corresponding SQL commands, thereby improving the precision
and efficiency of database query processing.

We also define the Spider-QPL dataset and experiment using the same neu-
ral architecture for two different tasks, text-to-SQL, and text-to-QPL, and
observe that pre-trained large language models can be fine-tuned for better
compositional generalization for text-to-QPL than text-to-SQL.

In our second contribution, we show that users with limited programming
expertise find QPL more comprehensible than SQL, particularly in the con-
text of complex queries. This characteristic of QPL is crucial as it facilitates
broader user engagement with database systems. By making complex query
structures more accessible to non-expert users, QPL enhances the usability
of database interaction, allowing a diverse user base to perform advanced
data retrieval tasks.

The prevalence of English as the de facto language employed in the design
and structure of database schemas, where table and column names are typi-
cally expressed in English, presents a notable challenge for non-expert users
who are not proficient in English. Our third contribution explores the do-
main of cross-lingual text-to-SQL: we explore the task of answering natural
language questions in Hebrew, referring to a database whose schema and con-
tent are in English. Our experiments indicate that recent progress in large
language models enables the construction of cross-lingual semantic parsers
by exploiting automatic machine translation of the question. The variability
in the vocabulary used to refer to database schema items in the questions
after they have been translated indicates that more work is needed to ad-
dress the problem of robust schema linking in current text-to-SQL models.
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In a series of experiments, we verify that state-of-the-art architectures still
exhibit low robustness in text-to-SQL and show that round-trip translation
attacks on questions remain challenging.

Overall, this research advances our understanding of semantic parsing by
stressing the importance of targeting modular formal languages with simple
operational semantics to support compositional generalization. Our experi-
mental results indicate that even when trained models reach very high perfor-
mance (over 90%) on standard text-to-SQL benchmarks, we should keep low
confidence that the predicted queries match the actual intent of the users
because users have a limited understanding of complex SQL queries. Fi-
nally, cross-linguistic queries and round-trip translation attacks demonstrate
the importance of improving ways models recognize linguistic variability, ac-
counting for the many distinct creative ways people use to refer to the same
content.
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CHAPTER 1

Introduction

1.1 Do Language Models Understand?

Natural Language Processing has witnessed a paradigm shift in recent years
with the rise of large language models (LLMs) such as OpenAI’s ChatGPT,
Google’s Bard, and Anthropic’s Claude. These models have transformed our
understanding of machine learning and natural language processing. Among
the most pressing questions in this domain is whether these models truly
“understand” language. On the one hand, in its most basic form, a language
model is just a piece of code that samples a new word based on the words
it produced previously, so it cannot possibly “understand”. On the other
hand, there’s a reason why these LLMs have grown in popularity, as they do
give some semblance of understanding when interacted with, despite “hallu-
cinating” at times. The notion of understanding, however, is not a binary
attribute but a spectrum of capabilities that can be measured in various
ways.
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One way to assess the capability of a language model is through task-oriented
benchmarks, i.e., a model’s “understanding” is evaluated based on a single
domain and task. For example, a model can be measured by its success in
classifying movie reviews’ sentiments or answering 8th-grade math questions.
These benchmarks are similar to unit tests in software development. We also
want to verify that the model’s behavior satisfies the expected properties of
understanding (continuing the software development metaphor; this is similar
to property-based testing), specifically two properties have been investigated:
consistency testing (a model should not say p and ¬p) and compositionality.

1.2 Compositionality

In semantics, the principle of compositionality [57] states that the meaning
of a complex expression is determined by the meanings of its constituent
expressions and the syntactic rules used to combine them. For our purposes,
we say that if a model can interpret simple expressions, it should be able to
interpret their syntactic combination.

Two main approaches to assessing a model’s compositional generalization
ability are specialized benchmarks and compositional splits.

Specialized benchmarks for compositional generalization, such as SCAN [38]
and COGS [37], measure a model’s capability to parse complex expressions.
During training, the model is shown a mapping between natural language
and a logical form up to a certain depth. The model is then expected to
generalize to unseen expression depths solely based on the training data and
structure. Examples of the SCAN and COGS benchmarks are shown in
Figure 1.1 and Figure 1.2, respectively.

The second approach to measure compositional generalization is using com-
positional splits, as proposed by Keysers, Schärli, Scales, Buisman, Furrer,
Kashubin, Momchev, Sinopalnikov, Stafiniak, Tihon, Tsarkov, Wang, van
Zee, and Bousquet [36]. Using a general formula, a dataset can be engi-
neered to be split into training and test sets with the property that the
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Figure 1.1: Example from the SCAN Benchmark

Figure 1.2: Example from the COGS Benchmark

3



Figure 1.3: Example of Compositional Split (Source: Moisio et al. [53])

simplest expressions (atoms) can be part of both sets, but complex expres-
sions (compounds) are found in only one of the sets. In Figure 1.3, we see an
example of a compositional split in the Machine Translation domain where
the atoms are parts of a dependency graph, i.e., words and edge labels, and
the compounds are the connections of the dependency graph.

1.3 Semantic Parsing

A complex and realistic task that allows evaluating a model’s compositional
generalization is Semantic Parsing (SP), the task of translating a natural
language utterance to a logical form. A logical form can be executed to
produce a denotation. Some examples of logical forms are λ-calculus, SQL,
and Python.

A question that is relevant today more than ever is why we should “bother”
with semantic parsing when question-answering (QA) is a uniform format to
interact with an NLP system. While QA goes from a question to an answer,
SP needs to go through an intermediate logical form before producing an
answer. QA is also universal because it allows us to test a model’s linguis-
tic capabilities and world knowledge in any domain. It is also possible to
“reduce” any task to QA. With that in mind, it would seem as if semantic
parsing is redundant.

Despite the above desirable properties of QA as a task, semantic parsing is
still hugely impactful in natural language processing, especially in light of
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ever-present “hallucinations” by LLMs. A first reason is that QA is chal-
lenging to assess, as there can be many questions with the same answer
(variability) and many valid answers to a single question (ambiguity). This
makes it hard to compare predicted answers to the expected ones. A second
reason is that QA models learn what to answer while SP models learn how
to answer, which allows a semantic parser to use skills that are hard to learn
(e.g., arithmetic). In semantic parsing, we have known semantics for the
logical form so that we can probe the semantic properties of the predicted
logical form. In the text-to-code domain, we can execute the predicted and
expected code snippets and compare the results. Seeing the predicted logical
form gives the user a glimpse of what the model “understood”. In text-to-
SQL for example, the availability of the query is a form of explanation of
what was understood by the parser.

1.4 Text-to-SQL

Structured Query Language (SQL) is widely recognized as the standard lan-
guage for database management and querying in relational database systems.
Despite its ubiquity and utility in database management, SQL’s complexity
can pose a significant challenge to non-expert users, particularly when con-
structing complex queries. SQL’s specificity and syntactic rigidity often ne-
cessitate a substantial understanding of database schema and query syntax,
which can deter users without a technical background in computer science
or database management.

In response to these challenges, the development of text-to-SQL models rep-
resents a significant area of research in natural language processing. These
models are designed to facilitate database interaction by enabling users to
input queries in natural language. The primary function of these models is
to convert a user’s natural language query into a valid SQL query, which
can then be executed against a database. This approach aims to simplify
the process of database querying, making it more accessible to users who
lack proficiency in SQL. The effectiveness of text-to-SQL models depends on
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Question:
What is the number of cars with more than 4 cylinders?

Schema:

SQL:

SELECT COUNT(*)
FROM cars_data
WHERE cylinders > 4

Figure 1.4: Spider Example

their ability to accurately interpret natural language semantics and translate
them into the structured format required by SQL.

The advancement of text-to-SQL technology has been accompanied by the
development of various datasets, which are essential for training and evalu-
ating the performance of these models. Among these datasets, the “Spider”
dataset [88] has emerged as a notable resource in recent years. Characterized
by its cross-domain scope, the Spider dataset encompasses various natural
language questions, database schemas, and corresponding SQL queries. The
diversity of the dataset ensures that models trained on it can adapt to multi-
ple query types and database structures. Figure 1.4 shows an example from
the development set of Spider.

1.5 Outline

In this thesis, we explore three research questions. Chapter 3 investigates
how we assess and improve the compositional generalization of text-to-SQL
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models. Chapter 4 studies whether people benefit from code generated by a
text-to-SQL system. Finally, Chapter 5 seeks to assess how robust models
are to question formulation variations, stressing the importance of schema
linking in a cross-lingual setting. We start in Chapter 2 with a review of
previous work in the field of text-to-SQL.
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CHAPTER 2

Previous Work

This chapter surveys the current state-of-the-art in the field of text-to-SQL.
We start with a description of the most widely used datasets and benchmarks
in the field with examples and then present the methods with the key ideas
that brought progress on this task.

2.1 Datasets

Before the introduction of the Spider dataset mentioned above, research and
evaluation in the text-to-SQL domain primarily utilized nine datasets, each
focusing on distinct query domains and database structures.

The ATIS dataset [11], a pioneer in text-to-SQL conversion, was anchored
in air travel queries from the Air Travel Information System, mapping these
to SQL queries. Similarly, GeoQuery [89] encompassed questions about U.S.
geography, initially linking utterances to logical forms before being adapted
by Iyer, Konstas, Cheung, Krishnamurthy, and Zettlemoyer [35] to include

8



SQL pairings.

The Restaurants dataset [59, 70] provided a basis for queries about dining
establishments, encompassing aspects like names, specialties, locations, and
ratings. Scholar [35] and Academic [42] datasets concentrated on academic-
related inquiries; the former targeting academic publications and the latter
focusing on queries used on the Microsoft Academic Search website, encom-
passing a comprehensive range of query logics supported by the platform.

Yelp and IMDB datasets [83] served queries related to customer reviews and
movie databases, respectively. WikiSQL [94], notable for its scale, was the
largest among these datasets, containing a rich collection of natural lan-
guage questions, SQL queries, and corresponding tables extracted from di-
verse Wikipedia tables.

Lastly, the Advising dataset [20] addressed queries about university course
information, further diversifying the range of domains covered by text-to-
SQL datasets prior to Spider’s creation.

Recent datasets have increased the scale to more samples and more domains
[39, 43]. In this work, we focus on the Spider dataset for our experiments,
as it enables comparison with many previous methods.

Table 2.1 presents the size of each dataset, along with a sample question and
its respective query.
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Dataset Sample Question SQL Query Size

ATIS Show me airline
abbreviations.

SELECT DISTINCT airline_code
FROM airline

5,280

GeoQuery What is the
biggest city in
Wyoming?

SELECT city_name FROM city
WHERE population = (SELECT
MAX(population) FROM city
WHERE state_name = 'Wyoming')
AND state_name = 'Wyoming'

877

Restaurants How many
“Buttercup
Kitchen” are
there in San
Francisco?

SELECT COUNT(*) FROM
restaurant AS t1 JOIN
LOCATION AS t2 ON t1.id =
t2.restaurant_id WHERE
t2.city_name = 'San
Francisco' AND t1.name =
'Buttercup Kitchen'

378

Scholar Papers that were
not published in
the last year.

SELECT DISTINCT paperid FROM
paper WHERE YEAR <> 2015

817

Academic Return me the
homepage of
PVLDB.

SELECT homepage FROM journal
WHERE name = 'PVLDB'

196

Yelp List all the
businesses with
more than 4.5
stars.

SELECT name FROM business
WHERE rating > 4.5

128

IMDB What year is the
movie “The
Imitation Game”
from?

SELECT release_year FROM
movie WHERE title = 'The
Imitation Game'

131

WikiSQL What is the name
of the license
created by IETF?

SELECT License FROM table
WHERE Creator = 'ietf'

80,654

Advising Can undergrads
take 550?

SELECT DISTINCT
ADVISORY_REQUIREMENT,
ENFORCED_REQUIREMENT, NAME
FROM COURSE WHERE DEPARTMENT
= 'EECS' AND NUMBER = 550

4,570

Table 2.1: Summary of Text-to-SQL Datasets
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2.2 Methods

2.2.1 Rule-based

Even before the inception of SQL, we already see a need for a natural lan-
guage interface to a database in the LUNAR system [80]. The primary
objective of LUNAR was to allow scientists to retrieve information from a
database using natural language. It aimed to interpret queries in English
and translate them into a formal language that can be executed against a
database.

LUNAR utilized a grammar-based approach to interpret user queries, wherein
grammar rules were crafted to handle the specific syntax and semantics of
the domain language. It used semantic primitives to represent the meanings
of words and phrases, combining them based on the syntactic structure to
construct a semantic representation of the user’s query. LUNAR translated
this semantic representation into a formal query language that could retrieve
the relevant information from the database.

Although LUNAR did its task well, the methodology cannot be easily trans-
lated to other domains. The manual crafting of rules and the embedding of
domain knowledge is labor-intensive, and handling the wide range of natural
language variability and ambiguity poses significant challenges.

Following the development of LUNAR, CHAT-80 [75] emerged as a seminal
system that advanced the concept of transforming natural language inquiries
into formal queries to retrieve information from databases. CHAT-80 was
designed to convert English language queries into PROLOG, thereby serving
as an intuitive interface to a database consisting of world facts.

CHAT-80 significantly enhanced the flexibility of natural language processing
for database inquiries by introducing a comprehensive syntactic and seman-
tic analysis approach. This system was proficient in conducting a rigorous
syntactic analysis to construct logical forms of input queries, which were then
interpreted into PROLOG expressions.
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Unlike LUNAR, CHAT-80 was recognized for its extensive grammatical frame-
work, which allowed for a more inclusive and elaborate representation of nat-
ural language semantics. This framework facilitated the efficient handling of
diverse syntactic constructions and complex semantic interpretations, en-
abling a wider coverage of natural language expressions and formulations.

However, similar to LUNAR, CHAT-80 also faced substantial challenges in
scaling and adapting to varied domains and databases, primarily due to its
reliance on meticulously designed grammar rules and semantic interpreta-
tions. The manual formulation of these components posed limitations in
extending the system’s capability to comprehend and interpret the vast and
intricate spectrum of natural language expressions and constructs across dif-
ferent domains.

2.2.2 Machine Learning

The work by Zelle and Mooney [89] is a pivotal work in the area of natural
language processing and represents a significant step in the development of
Text-to-SQL systems. The main objective of the paper was to demonstrate
the possibility of using inductive logic programming (ILP) to learn to parse
natural language database queries. The approach is particularly important
as it utilizes examples to learn the translation of natural language queries
into a logical form that can be subsequently converted into SQL.

The work by Zettlemoyer and Collins [90] proposed a novel approach to se-
mantic parsing that employs a probabilistic categorial grammar as the under-
lying formalism. Their method involves learning mappings from sentences to
logical form representations, effectively transforming natural language into a
formal language. The key innovation is the use of a structured classification
approach, which enables the learning of complex mappings in a supervised
learning setting.

Both contributed seminal work in the realm of text-to-SQL through machine
learning methodologies. They share two significant shortcomings:
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• Domain Dependency: Both models are heavily reliant on domain-
specific data, making them less adaptable to other, especially new,
domains without extensive, domain-specific annotated data.

• Data Annotation: The necessity for extensively annotated train-
ing data in both approaches is a substantial barrier, as creating such
datasets is often expensive, laborious, and unscalable.

2.2.3 Neural Architectures

Dong and Lapata [15] were the first to use an attention-based sequence-to-
sequence model, previously shown to excel at the machine translation task,
for the text-to-SQL task. The method was tested on two single-domain
datasets (GeoQuery and ATIS) and achieved ~84% exact match accuracy.
However, the method fails to generalize to different domains, achieving only
4.8% exact match accuracy on the Spider dataset.

Bogin, Berant, and Gardner [4] presented a method based on Graph Neural
Networks (GNNs) [46] which uses the connections, i.e., primary and foreign
keys, between database schema items (columns and tables) as edges in the
GNN, thus greatly enhancing the generalization capability of the model to
unseen schemas. This approach raised the bar of text-to-SQL models eval-
uated on the Spider dataset, improving the previous state-of-the-art from
19.7% to 39.4% exact match accuracy.

Another notable work from the same time as the GNN method is due to Guo,
Zhan, Gao, Xiao, Lou, Liu, and Zhang [30], who introduced IRNet. IRNet
works in two phases:

1. Schema Linking: find phrases in the input utterance that relate to
the database schema items.

2. SemQL Synthesis: the model outputs a more simple and regular
language than SQL called SemQL, which is based on relational algebra
[10]. This language is then translated automatically to SQL.
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This approach improved on the GNN method above, going up to 46.7% exact
match accuracy.

RAT-SQL [73] introduced a unified framework for addressing the challenges
of schema encoding and linking in the context of text-to-SQL parsing. It
leverages a relation-aware self-attention mechanism to effectively encode the
relational structure of database schemas and align them with natural lan-
guage queries. This approach significantly improves the parsing model’s
ability to handle unseen database schemas, a common challenge in seman-
tic parsing tasks. The framework’s effectiveness is demonstrated through its
superior performance on the Spider dataset (57.2% exact match), achieving
state-of-the-art results, particularly when augmented with BERT embed-
dings (65.6% exact match).

Central to the RAT-SQL framework are its schema linking techniques, includ-
ing both name-based and value-based linking. Name-based linking focuses
on matching column and table names in questions, while value-based linking
aligns question mentions with database values. This dual approach allows
for a more nuanced and accurate interpretation of natural language queries,
facilitating their conversion into SQL queries. Additionally, the decoder in
RAT-SQL plays a crucial role by generating SQL actions, such as expanding
grammar rules and selecting appropriate schema elements, further enhancing
the framework’s query generation capabilities.

Gan, Chen, Xie, Purver, Woodward, Drake, and Zhang [26] introduced Nat-
ural SQL (NatSQL), a novel intermediate representation (IR) designed to
simplify the translation of natural language descriptions into SQL queries.
NatSQL addresses the inherent mismatch between natural language and the
structured format of SQL, which has been a significant challenge in text-to-
SQL conversion. It accomplishes this by simplifying SQL queries, dispensing
with complex operators and keywords, and reducing the need for nested sub-
queries and a large number of schema items. This simplification makes it
easier to generate executable SQL queries that closely align with natural
language descriptions.

By incorporating NatSQL into existing neural network models, the paper
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demonstrates significant improvements in model performance. Particularly
notable is the achievement of state-of-the-art execution accuracy on the
Spider benchmark when NatSQL is used in conjunction with the RAT-
SQL+GAP model, achieving 73.3% exact match accuracy. This suggests
that optimizing the correspondence between natural language and query
languages through specialized IRs like NatSQL is a promising direction for
enhancing the capabilities of text-to-SQL models.

Furthermore, NatSQL specifically improves the generation of SQL keywords
and schema items, areas where traditional text-to-SQL models often struggle.
This improvement stems from NatSQL’s design, which more effectively cap-
tures the intents expressed in natural language and translates them into the
appropriate SQL structure. In essence, NatSQL serves as a bridge, reducing
the gap between the expressive natural language queries and the technical
specifics of SQL code, thus facilitating more accurate and efficient text-to-
SQL translation.

2.2.4 Large Language Models (LLMs)

In 2017, Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and
Polosukhin [72] presented the “Transformer” architecture, which initially has
been used mainly for machine translation. However, due to T5 [61] in 2020,
the text-to-SQL task has entered its age of LLMs. Shaw, Chang, Pasupat,
and Toutanova [66] have shown that given an input that includes the nat-
ural language question together with basic schema information (table and
column names), the largest T5 model (3B parameters) fine-tuned on the Spi-
der training set achieves 70% exact match accuracy, competitive with the
state-of-the-art at the time, 70.6%.

Aside from the above approach, all other methods use a custom architec-
ture to achieve their results, meaning that large pre-trained language models
cannot be used for the task. On the other hand, using only a fine-tuned
pre-trained model to generate a SQL query can yield invalid SQL, either be-
cause it’s malformed, i.e., not adhering to the SQL grammar, or has semantic
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problems, such as using a column not belonging to a certain table.

Enter PICARD [64], which presented a novel method for enhancing text-
to-SQL translation by constraining the output of pre-trained language mod-
els. Large language models, while effective in various tasks, often struggle
with generating valid SQL queries due to their unconstrained output space.
PICARD addresses this by applying incremental parsing to constrain auto-
regressive decoders, ensuring that only valid SQL tokens are produced at each
decoding step. This method significantly improves the accuracy of models
on Spider, transforming them into state-of-the-art solutions without the need
for extensive modifications.

PICARD’s design is both versatile and efficient. It is compatible with any
auto-regressive language model decoder and does not require substantial
changes to pre-existing model architectures or training processes. The in-
cremental parsing technique operates directly on the model’s output, in this
case, SQL code, and is easily integrated at the inference stage. This flexibility
allows PICARD to be applied broadly across different models and tasks.

The framework operates in multiple modes, each providing different levels
of parsing and validation. The simplest mode, lexing, checks the output at
a lexical level, ensuring the validity of SQL tokens regardless of their order.
This mode is crucial for detecting errors like misspelled keywords or incorrect
table and column names. More advanced modes involve parsing the model’s
output to an abstract syntax tree (AST), considering the grammatical struc-
ture of the SQL query, and enforcing constraints on query composition and
structure.

In its most comprehensive mode, PICARD includes additional analytical
processes known as guards. These guards impose strict constraints on the
relationships between tables, columns, and aliases within the SQL queries.
For instance, they ensure that referenced tables and columns are correctly
brought into scope and prevent the misuse of aliases. This level of parsing
significantly reduces the likelihood of generating syntactically incorrect or
semantically nonsensical queries.
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While the original method uses the SQLite grammar to work with the Spider
dataset and the T5 family of models for their experiments, this method can be
used with any fine-tuned pre-trained language model, and different grammars
can be used, so long as one writes a parser. PICARD took the pre-trained
T5-3B model from 70% exact match accuracy to 75.5% and 79.3% execution
accuracy. Today, most methods that rely on a pre-trained language model
use PICARD by default, as it is an “easy win”: PICARD does not incur any
time or memory costs during fine-tuning (as it is not used at that point) and
works seamlessly with many HuggingFace Transformers [77] models.

With the emergence of GPT-3 [5] and GPT-4 [56], fine-tuned models were
surpassed in the Spider leaderboard in terms of execution accuracy, rather
than exact match accuracy.

Pourreza and Rafiei [60] introduced a method called DIN-SQL to enhance the
performance of LLMs in text-to-SQL tasks. It addresses the gap between fine-
tuned models and LLMs in handling complex text-to-SQL datasets like Spi-
der. The approach involves decomposing text-to-SQL tasks into smaller sub-
tasks, significantly improving the LLMs’ performance. The paper demon-
strates that this method enhances the LLMs’ few-shot performance by ap-
proximately 10%, achieving new state-of-the-art execution accuracy on the
Spider test set.

This approach uses few-shot prompting to decompose the text-to-SQL task
into multiple steps. While zero-shot prompting provides a baseline, it often
falls short, especially for medium and complex queries. The proposed method
outperforms the few-shot prompting method by a large margin, using two
versions of the CodeX model and GPT-4 for prompting. The method sets
new grounds in execution accuracy (85.3%), surpassing many heavily fine-
tuned models.

DIN-SQL comprises four modules: schema linking, query classification and
decomposition, SQL generation, and self-correction. These modules are im-
plemented using prompting techniques, showing that LLMs can solve the
decomposed problems effectively. The self-correction module specifically ad-
dresses minor errors in the generated SQL queries, such as missing or redun-
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dant keywords, enhancing the overall accuracy and reliability of the models.

Gao, Wang, Li, Sun, Qian, Ding, and Zhou [28] highlights the absence of
systematic benchmarks for developing LLM-based Text-to-SQL solutions and
addresses this gap by conducting an extensive comparison of existing prompt
engineering methods. This comparison includes various aspects such as ques-
tion representation, example selection, and organization. Based on these
findings, the authors propose an integrated solution, DAIL-SQL, which sig-
nificantly improves performance on the Spider leaderboard (86.6% execution
accuracy).

To summarize, the key ideas presented in the above works are mainly the
importance of schema linking, the use of an intermediate language to bridge
the gap between natural language questions and SQL, and the PICARD con-
strained decoding method, which guarantees valid output from a pre-trained
language model. As both SemQL and NatSQL are intermediate languages
that are based on the syntax of SQL rather than its semantics, in Chap-
ter 3, we will explore the other direction: an intermediate language that is
semantics-based. In Chapter 5, we will check the robustness of schema link-
ing to perturbations in the question. Although we can see an upward trend
in the execution accuracy of text-to-SQL models on the Spider dataset, care-
ful inspection of their results shows that they succeed in generating simple
queries and fall short when generating complex SQL, which is a current lim-
itation in text-to-SQL models (even those based on LLMs and achieve more
than 80% execution accuracy). This topic is discussed in-depth in Chapter 3.
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CHAPTER 3

Query Decomposition for Compositional Generalization

3.1 Introduction

Querying and exploring complex relational data stores necessitate program-
ming skills and domain-specific knowledge of the data. Text-to-SQL seman-
tic parsing allows non-expert programmers to formulate questions in natural
language, convert the questions into SQL, and inspect the execution results.
While recent progress on this task has been remarkable, general cross-domain
text-to-SQL models still face challenges on complex schemas and queries.
State-of-the-art text-to-SQL models show performance above 90% for easy
queries but fall to about 50% on complex ones (see Table 3.1). This accu-
racy drop is particularly bothersome for non-experts because they also find
it difficult to verify whether a complex SQL query corresponds to the intent
behind the question they asked. In a user study we performed, we found that
software engineers who are not experts in SQL fail to determine whether a
complex SQL query corresponds to a question in about 66% of the cases (see
Chapter 4). The risk of text-to-code models producing incorrect results with
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confidence is thus acute: complex SQL queries non-aligned with users’ intent
will be hard to detect.

Question

What is the official language spoken in the country whose head of state
is Beatrix?

Gold SQL

SELECT T2.Language
FROM country AS T1
JOIN countrylanguage AS T2 ON T1.Code = T2.CountryCode
WHERE T1.HeadOfState = 'Beatrix' AND T2.IsOfficial = 'T'

Gold QPL

#1 = Scan Table [country] Predicate [HeadOfState = 'Beatrix']
Output [Code, HeadOfState]

#2 = Scan Table [countrylanguage] Output [CountryCode, Language, IsOfficial]
#3 = Filter [#2] Predicate [IsOfficial = 'T'] Output [CountryCode, Language]
#4 = Join [#1, #3] Predicate [#3.CountryCode = #1.Code] Output [#3.Language]

Computed Question Decomposition (QD)

#1 = Scan the table country and retrieve the code and
head of state of the country whose head of state is Beatrix

#2 = Scan the table countrylanguage and retrieve the country codes,
languages and if they're official

#3 = Filter from #2 all the official languages and
retrieve the country codes and languages

#4 = Join #1 and #3 based on the matching country codes and retrieve
the language spoken in the country whose head of state is Beatrix

Predicted QDMR

#1 = return countries whose head of state is Beatrix ;
#2 = return the official language spoken in the official language of #1

Figure 3.1: Example QPL and Question Decomposition compared to the
original SQL query from Spider and to the predicted QDMR question de-
composition from [78].
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This chapter addresses the challenge of dealing with complex data retrieval
questions through a compositional approach. Based on the success of the
question decomposition approach for multi-hop question answering, recent
work in semantic parsing has also investigated ways to deal with complex SQL
queries with a Question Decomposition (QD) strategy. In another direction,
previous attempts have focused on splitting complex SQL queries into spans
(e.g., aggregation operators, join criteria, column selection) and generating
each span separately.

Our approach starts with a semantic analysis of the SQL query. We in-
troduce a new intermediary language, which we call Query Plan Language
(QPL), that is modular and decomposable. QPL can be directly executed on
SQL databases through direct translation to modular SQL Common Table
Expressions (CTEs). We design QPL to be both easier to learn with modern
neural architectures than SQL and easier to interpret by non-experts. The
overall approach is illustrated in Fig. 3.1. We develop an automatic transla-
tion method from SQL to QPL. On the basis of the modular QPL program,
we also learn how to generate a natural language decomposition of the orig-
inal question. In contrast to generic QD methods such as QDMR [78], our
decomposition takes into account the database schema, which is referenced
by the question, and the semantics of the QPL operations.

Previous research in semantic parsing has shown that the choice of the tar-
get language impacts a model’s ability to learn to parse text into an ac-
curate semantic representation. For instance, Guo, Liu, Lou, Li, Liu, Xie,
and Liu [31] compared the performance of various architectures on three
question-answering datasets with targets converted to Prolog, Lambda Cal-
culus, FunQL, and SQL. They discovered that the same architectures produce
lower accuracy (up to a 10% difference) when generating SQL, indicating that
SQL is a challenging target language for neural models. The search for a tar-
get language that is easier to learn has been pursued in Text-to-SQL as well
[26, 30, 87]. We can view QPL as another candidate intermediary language,
which, in contrast to previous attempts, does not rely on a syntactic analysis
of the SQL queries but rather on a semantic transformation into a simpler,
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more regular query language.

The rest of the chapter reviews recent work in text-to-SQL models that inves-
tigates intermediary representations and question decomposition. We then
present the Query Plan Language (QPL) we have designed and the conversion
procedure we have implemented to translate the existing large-scale Spider
dataset into QPL. We then describe how we exploit the semantic transfor-
mation of SQL to QPL to derive a dataset of schema-dependent Question
Decomposition. We finally present strategies that exploit the compositional
nature of QPL to train models capable of predicting complex QPL query
plans from natural language questions and to decompose questions into data-
retrieval-oriented decompositions.

We investigate the following research question introduced in Chapter 1:
(RQ1) Is it easier to learn Text-to-QPL – a modular, decomposable query
language – than to learn Text-to-SQL using Language Model based architec-
tures;

Our main contributions are (1) the definition of the QPL language together
with automatic translation from SQL to QPL and execution of QPL on
standard SQL servers; (2) the construction of the Spider-QPL dataset which
enriches the Spider samples with validated QPL programs for Spider’s dataset
together with Question Decompositions based on the QPL structure; (3) Text-
to-QPL models to predict QPL from a (Schema + Question) input that are
competitive with state of the art Text-to-SQL models and perform better on
complex queries.1

3.2 Starting Points

Text-to-SQL parsing consists of mapping a question Q = (x1, . . . , xn) and
a database schema S = [table1(col

1
1 . . . col

1
c1
), . . . , tableT (col

T
1 . . . colTcT )] into a

valid SQL query Y = (y1, . . . , yq). Performance metrics include exact match
(where the predicted query is compared to the expected one according to the

1All of the datasets and code are available on https://github.com/bgunlp/qpl.
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Difficulty NatSQL + RAT-SQL Din-SQL GPT-4 GPT3.5-turbo
Easy 91.6% 91.1% 87.7%
Medium 75.2% 79.8% 75.1%
Hard 65.5% 64.9% 72.5%
Extra Hard 51.8% 43.4% 53.9%
Overall 73.7% 74.2% 74.3%

Table 3.1: Spider Development Set baseline execution accuracy by difficulty
level

overall SQL structure and within each field token by token) and execution
match (where the predicted query is executed on a database and results are
compared).

3.2.1 Architectures for Text-to-SQL

Since the work of Dong and Lapata [15], leading text-to-SQL models have
adopted attention-based sequence-to-sequence architectures, translating the
question and schema into a well-formed SQL query. Pre-trained transformer
models have improved performance as in many other NLP tasks, starting
with BERT-based models [34, 47] and up to larger LLMs, such as T5 [61] in
[64], OpenAI CodeX [7] and GPT variants [49, 60, 62].

In addition to pre-trained transformer models, several task-specific improve-
ments have been introduced: the encoding of the schema can be improved
through effective representation learning [4], and the attention mechanism
of the sequence-to-sequence model can be fine-tuned [73]. On the decoding
side, techniques that incorporate the syntactic structure of the SQL output
have been proposed.

To make sure that models generate a sequence of tokens that obey SQL
syntax, different approaches have been proposed: in Yin and Neubig [86],
instead of generating a sequence of tokens, code-oriented models generate
the abstract syntax tree (AST) of expressions of the target program. Scholak
et al. [64] defined the constrained decoding method with PICARD. PICARD
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is an independent module on top of a text-to-text auto-regressive model that
uses an incremental parser to constrain the generated output to adhere to the
target SQL grammar. Not only does this eliminate almost entirely invalid
SQL queries, but the parser is also schema-aware, thus reducing the number
of semantically incorrect queries, e.g., selecting a non-existent column from
a specific table. We have adopted constrained decoding in our approach by
designing an incremental parser for QPL and enforcing the generation of
syntactically valid plans.

3.2.2 Zero-shot and Few-shot LLM Methods

With recent LLM progress, the multi-task capabilities of LLMs have been
tested on text-to-SQL. In zero-shot mode, a task-specific prompt is prefixed
to a textual encoding of the schema and the question, and the LLM outputs
an SQL query. Rajkumar et al. [62] and Liu, Hu, Wen, and Yu [48] showed
that OpenAI Codex achieves 67% execution accuracy. In our own evaluation,
GPT-4 (as of May 2023) achieves about 74% execution accuracy under the
same zero-shot prompting conditions.

Few-shot LLM prompting strategies have also been investigated: example
selection strategies are reviewed in Guo, Tian, Tang, Wang, Wen, Yang,
and Wang [29] and Nan, Zhao, Zou, Ri, Tae, Zhang, Cohan, and Radev
[54] and report about 85% execution accuracy when tested on the Spider
development set or the Spider training set. Pourreza and Rafiei [60] and Liu
and Tan [49] are top performers on Spider with the GPT4-based DIN-SQL.
They use multi-step prompting strategies with query decomposition.

Few-shot LLM prompting methods close the gap and even outperform spe-
cialized Text-to-SQL models with about 85% execution match vs. 80% for
3B parameters specialized models on the Spider test set, without requiring
any fine-tuning or training. In this paper, we focus on the hardest cases of
queries, which remain challenging both in SQL and in QPL (with execution
accuracy at about 60% in the best cases). We also note that OpenAI-based
models are problematic as baselines since they cannot be reproduced reli-
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ably.2

3.2.3 Intermediary Target Representations

Most text-to-SQL systems suffer from a severe drop in performance for com-
plex queries, as reported, for example, in DIN-SQL results where the drop
in execution accuracy between simple queries and hard queries is from about
85% to 55% (see also Lee [40]). We demonstrate this drop in Table 3.1, which
shows execution accuracy of leading baseline models [26, 60] per Spider diffi-
culty level on the development set. The gpt-3.5-turbo results correspond to
our own experiment using zero-shot prompting. Other methods have been
used to demonstrate that current sequence-to-sequence methods suffer at
compositional generalization, that is, systems trained on simple queries fail
to generate complex queries, even though they know how to generate the
components of the complex query. This weakness is diagnosed by using chal-
lenging compositional splits [27, 36, 66] over the training data.

One of the reasons for such failure to generalize to complex queries relates
to the gap between the syntactic structure of natural language questions and
the target SQL queries. This has motivated a thread of work attempting to
generate simplified or more generalizable logical forms than executable SQL
queries. These attempts are motivated by empirical results on other semantic
parsing formalisms that showed that adequate syntax of the logical form can
make learning more successful [31, 32].

Most notable attempts include SyntaxSQLNet [87], SemQL [30] and NatSQL
[26].

NatSQL aims at reducing the gap between questions and queries. It in-
troduces a simplified syntax for SQL from which the original SQL can be
recovered. Figure 3.2 illustrates how this simplified syntax is aligned with
the spans of the question.

2It is most likely that the Spider dataset was part of the training material processed
by GPT models.

25



Question

What type of pet is the youngest animal,
and how much does it weigh?

SQL

SELECT PetType , Weight FROM Pets
ORDER BY Pet_Age LIMIT 1

Spider-SS Decomposition
SubSentence: What type of pet
NatSQL: SELECT Pets.Pettype
SubSentence: is the youngest animal
NatSQL: ORDER BY Pets.Pet_Age LIMIT 1
SubSentence: and how much does it weigh?
NatSQL: SELECT Pets.Weight

Figure 3.2: NatSQL and Question Decomposition in Spider-SS [27]

Our work is directly related to this thread. Our approach in designing QPL
is different from NatSQL in that we do not follow SQL syntax nor attempt
to mimic the syntax of natural language. Instead, we apply a semantic
transformation on the SQL query and obtain a compositional regular query
language where all the nodes are simple executable operators that feed into
other nodes in a data-flow graph according to the execution plan of the SQL
query. Our method does not aim to simplify the mapping of a single question
to a whole query but instead to decompose a question into a tree of simpler
questions, which can then be mapped to simple queries. The design of QPL
vs. SQL adopts the same objectives as those defined in KoPL vs. SparQL in
Cao, Shi, Pan, Nie, Xiang, Hou, Li, He, and Zhang [6] in the setting of QA
over Knowledge Graphs.
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3.2.4 Question Decomposition Approaches

Our approach is also inspired by work attempting to solve complex QA and
semantic parsing using a question decomposition strategy [14, 23, 55, 58,
63, 79, 84, 93]. In this approach, the natural language question is decom-
posed into a chain of sub-steps, which has been popular in the context of
Knowledge-Graph-based QA with multi-hop questions [52, 91]. Recent work
attempts to decompose the questions into trees [33], which yields explainable
answers [92].

In this approach, the question decomposer is sometimes learned in a joint
manner to optimize the performance of an end-to-end model [85]; it can also
be derived from a syntactic analysis of complex questions [13], or specialized
pre-training of decompositions using distant supervision from comparable
texts [95], or weak supervision from execution values [79]. LLMs have also
been found effective as generic question decomposers in Chain of Thought
(CoT) methods [8, 74, 76]. In this work, we compare our own Question
Decomposition method with the QDMR model [79].

3.3 Query Plan Language (QPL) Definition
and Dataset Conversion

In order to investigate methods that analyze queries of different complexity
and ways to decompose queries into sub-queries in a productive manner,
we design a new intermediary language that we call Query Plan Language
(QPL). QPL is intended to express the same queries as SQL; we also want
QPL queries to be easy to decompose or recompose. Finally, we want QPL
queries to be syntactically organized in a bottom-up manner so that queries
are organized starting from simple steps, that we incrementally combine into
more complex computations. Naturally, we want to be able to execute QPL
queries and obtain the same result as their equivalent SQL queries.

We design QPL as a modular dataflow language that encodes the semantics
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of SQL queries. We take inspiration in our semantic transformation from
SQL to QPL from the definition of the execution plans used internally
by SQL optimizers, e.g., [65]. We automatically convert the original Spider
dataset into a version that includes QPL expressions for all the training and
development parts of Spider, and verify that in each case, the QPL query
returns exactly the same result as the original SQL query. The detailed
syntax of QPL is shown in Appendix B.

QPL abstract syntax is a hierarchical representation of execution plans. It is
a tree of operations in which the leaves are table reading nodes (Scan nodes),
and the inner nodes are either unary operations (such as Aggregate and
Filter) or binary operations (such as Join and Intersect). Nodes have
arguments, such as the table to scan in a Scan node or the join predicate of
a Join node. For example, the SQL query:

SELECT Theme, AVG(Age)
FROM singer AS T1

JOIN singer_in_concert AS T2
ON T1.Singer_ID = T2.Singer_ID

JOIN concert AS T3
ON T2.concert_ID = T3.concert_ID

GROUP BY Theme

Results in the following execution tree (outputs and parameters omitted for
brevity):

Aggregate

Join

Join

Scan(singer_in_concert) Scan(singer)

Scan(concert)
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We write QPL’s concrete syntax bottom-up, and from the above SQL query
we get the following QPL expression:

#1 = Scan Table [ singer_in_concert ] Output [ concert_ID , Singer_ID ]
#2 = Scan Table [ singer ] Output [ Singer_ID , Age ]
#3 = Join [ #1 , #2 ] Predicate [ #1.Singer_ID = #2.Singer_ID ]

Output [ #2.Age , #1.concert_ID ]
#4 = Scan Table [ concert ] Output [ concert_ID , Theme ]
#5 = Join [ #3 , #4 ] Predicate [ #3.concert_ID = #4.concert_ID ]

Output [ #3.Age , #4.Theme ]
#6 = Aggregate [ #5 ] GroupBy [ Theme ]

Output [ AVG(Age) AS Avg_Age , Theme ]

An important distinction between QPL plans and SQL queries is that every
QPL sub-plan is a valid executable operator, which returns a stream of data
tuples. For example, Fig. 3.1 shows an execution plan with 4 steps and depth
2. The 4 steps are the two Scan leaves, the Filter sub-plan, and the Join
sub-plan, which is the root of the overall plan.

We automatically convert SQL queries into semantically equivalent QPL
plans by reusing the execution plans produced by Microsoft SQL Server 2019
query optimizer [22]. QPL is a high-level abstraction of the physical exe-
cution plan produced (which includes data and index statistics). In QPL
syntax, we reduced the number of operators to the 10 operators listed in
Table 3.2. We also design the operators to be context free, i.e., all oper-
ators take as input streams of tuples and output a stream of tuples, and
the output of an operator only depends on its inputs.3 We experiment with
different syntactic realizations of QPL expressions and elected the version
where steps are numbered and ordered bottom-up, corresponding roughly to
the execution order of the steps. We validate that the result sets returned
by the converted QPL plans are equivalent to those of the original Spider
SQL queries. We thus enrich the Spider training and development sets with

3This is in contrast to SQL execution plan operators such as Nested-Loops where the
two children nodes tightly depend on each other.
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Operator Description
Scan Scan all rows in a table with optional filtering predicate
Aggregate Aggregate a stream of tuples using a grouping criterion

into a stream of groups
Filter Remove tuples from a stream that do not match a pred-

icate
Top Select top-K tuples from a stream
Sort Sort a stream according to a sorting expression
TopSort Select the top-K tuples from a stream according to a

sorting expression
Join Perform a logical join operation between two streams

based on a join condition
Except Compute the set difference between two streams of tu-

ples
Intersect Compute the set intersection between two streams of

tuples
Union Compute the set union between two streams of tuples

Table 3.2: Description of QPL Operators

semantically equivalent QPL programs as shown in Fig. 3.3. Further details
on the conversion from SQL to CTE are available in Appendix D.

3.4 Translating Questions into QPL

3.4.1 Text-to-QPL Model

In order to train a text-to-QPL model, we fine-tune Flan-T5-XL [9] (3B pa-
rameters) on 6,509 training examples. Each example contains a question,
schema information, and the gold computed QPL. The input to the model
is the same as in Shaw et al. [66], i.e., Question | Schema Name | Table1
: Col11, Col12, ... | Table2 : Col21, Col22, ... We also experi-
ment with rich schema encoding, adding type, key, and value information as
described below. We train the model for 15 full epochs and choose the model
with the best execution accuracy on the development set. Execution accu-
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SQL Query
Optimizer
Exec Plan QPL CTE

Results

Figure 3.3: QPL generation process: the dataset SQL expressions are run
through the query optimizer, which is then converted into QPL. QPL expres-
sions are converted into modular CTE SQL programs, which can be executed.
We verify that the execution results match those of the original SQL queries.

Original SQL

SELECT template_id, count(*)
FROM Documents
GROUP BY template_id

CTE

WITH
Scan_1 AS (

SELECT Template_ID FROM Documents
),
Aggregate_2 AS (

SELECT COUNT(*) AS Count, Template_ID
FROM Scan_1
GROUP BY Template_ID

)
SELECT * FROM Aggregate_2

Figure 3.4: SQL query and its equivalent CTE

racy is calculated by generating a QPL prediction, converting it to Common
Table Expression format (CTE) (see example in Fig. 3.4), running the CTE
in the database, and comparing the predicted result sets of the predicted
and gold CTEs. The final evaluation of the model uses the PICARD [64]
decoder with a parser we developed for QPL syntax. This constrained de-
coding method ensures that the generated QPL programs are syntactically
valid. Details on this implementation are available in Appendix C.
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Schema Encoding

We compare two methods to describe the database schema when we prompt
our models:

1. Simple Schema Encoding: this is similar to Shaw et al. [66], i.e.,
Question | Schema Name | Table1 : Col11, Col12, ... | Table2
: Col21, Col22, ...

2. Rich Schema Encoding: this encoding provides for each column a sim-
plified type (as in Spider - text, number, date, or others); primary and
foreign keys; and values.

For example:

Simple Schema Encoding: pets_1

Table Student (StuID, LName, Fname, Age, Sex, Major, Advisor, city_code)
Table Pets (PetID, PetType, pet_age, weight)
Table Has_Pet (StuID, PetID)

Rich Schema Encoding: pets_1

CREATE TABLE Student (
StuID number,
LName text,
Fname text,
Age number,
Sex text,
Major number,
Advisor number,
city_code text,
primary key ( StuID )

)

CREATE TABLE Pets (
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PetID number,
PetType text ( dog ),
pet_age number,
weight number,
primary key ( PetID )

)

CREATE TABLE Has_Pet (
StuID number,
PetID number,
foreign key ( StuID ) references Student ( StuID ),
foreign key ( PetID ) references Pets ( PetID )

)

Values are added after each column when an n-gram from the question is
found as one of the values in one of the rows of the table. For example, for
the question “How much does the youngest dog weigh?”, the n-gram “dog” is
found in the values of the column PetType. In this case, the value annotation
PetType text ( dog ) is encoded.

3.5 Question Decomposition

We use the QPL plans automatically computed from SQL queries in the
dataset to derive a set of question decompositions (QD) that are grounded
in the QPL steps, as shown in Fig. 3.1. We investigate three usages of this
QD method: (1) QPL → QD: we learn how to generate a QD given a
QPL plan; this is useful at inference time, to present the predicted QPL to
non-expert users, as a more readable form of the plan; (2) Q → QD we
train a question decomposer on the Spider-QPL dataset for which we collect
a set of validated automatically generated QDs; (3) Q + QD → QPL we
finally investigate a Text-to-QPL predictor model which given a question,
firstly generates a corresponding QD, and then predicts a QPL plan based
on (Q+QD).
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3.5.1 QPL to QD

We use the OpenAI gpt-3.5-turbo-0301 model to generate a QD given a
QPL plan. We prepared a few-shot prompt that includes a detailed descrip-
tion of the QPL language syntax and six examples that cover all the QPL
operators that we prepared manually (see Appendix F).

We manually validated 50 pairs (QPL, QD) generated using this method
and found them to be reliable, varied, and fluent. In addition, we designed
an automatic metric to verify that the generated QDs are well aligned with
the source QPL plan: (1) we verify that the number of steps in QD is the
same as that in the source QPL; (2) we identify the leaf Scan instructions in
the QD and verify that they are aligned with the corresponding QPL Scan
operations. To this end, we use a fuzzy string matching method to identify
the name of the table to be scanned in the QD instruction. The QPL-QD
alignment score combines the distance between the length of QD and QPL
and the IoU (intersection over union) measure of the set of Scan operations.

3.5.2 Dataset Preparation

Using the QPL → QD generator, we further enrich the Spider-QPL dataset
with a computed QD field for each sample. For the sake of comparison, we
also compute the predicted QDMR decomposition of the question [78] using
the Question Decomposer from [79]4

We obtain for each example a tuple: <Schema, Question, SQL, QPL, QD,
QDMR>. We obtained 1,007 valid QDs (QPL-QD alignment score of 1.0) in
the Spider Dev Set (out of 1,034) and 6,285 out of 6,509 in the Training Set
with a valid QPL.

4We used the decomposer model published in https://github.com/tomerwolgithub/
question-decomposition-to-sql.
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3.5.3 Question Decomposer Model

Given the dataset of <Q, QD> obtained above, we train a QPL Question
Decomposer, which learns to predict a QD in our format given a question
and a schema description: Q+ Schema → QD. We fine-tune a Flan-T5-XL
(3B parameters) model for this task, using the same schema encoding as for
the Q+ Schema → QPL model shown in §3.4.1.

Spider Difficulty Q → QPL Q+QD → QPL Q → SQL Support
Simple Schema
Easy 87.5% 84.7% 91.9% 248
Medium 84.3% 72.2% 76.9% 446
Hard 66.7% 62.0% 64.9% 174
Extra Hard 54.8% 45.1% 44.6% 166
Overall 77.4% 69.1% 73.3% 1034
Rich Schema
Easy 93.5% 91.5% 248
Medium 89.0% 88.3% 446
Hard 74.7% 69.5% 174
Extra Hard 65.1% 63.9% 166
Overall 83.8% 82.0% 1034

Table 3.3: Accuracy on Spider Development Set by difficulty level with Sim-
ple Schema Encoding (table names and column names) and Rich Schema
Encoding (column types, keys, values).

3.5.4 Q+QD to QPL Prediction

We train a Flan-T5-XL (3B parameters) model under the same conditions as
previous models on ⟨Q,QD,QPL⟩ to predict QPL given the QD computed
by our question decomposer.
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3.6 Experiments and Results

3.6.1 Text-to-QPL Prediction

We present our results on the Spider development set in Table 3.3. We
compare our models to T5-3B with PICARD [64], as it is the closest model to
ours in terms of number of parameters, architecture, and decoding strategy.
To make the comparison as close as possible, we retrain a model <Q → SQL>
using the same base model Flan-T5-XL (3B parameters) as we use for our <Q
→ QPL> model. We also compare two schema encoding methods: Simple
Schema Encoding only provides the list of table names and column names
for each table; Rich Schema Encoding provides for each column additional
information: simplified type (same types as used in Spider’s dataset - text,
number, date, other), keys (primary and foreign keys) and values (see §3.4.1
for details). We see that at every difficulty level (except “Easy” for Simple
Schema Encoding), our Q → QPL model improves on the baseline. The same
is true compared to the other models in Table 3.1.5 All other things being
equal, this experiment indicates that it is easier to learn QPL as a target
language than SQL (RQ1).

On overall accuracy, the direct Q → QPL model achieves a respectable
77.4% without database content and 83.8% with database content. Our
model notably achieves the highest execution accuracy on Hard and Extra-
Hard queries across existing fine-tuned and LLM-based models (70.0% across
Hard+Extra-Hard with database content).

The <Q + QD → QPL> model is inferior to the direct Q → QPL model
(69.1% to 77.4% with simple schema encoding). We verified that this is
due to the lower quality of the QD produced by our question decomposer.
On Oracle QD, the model produces about 83% accuracy without database
content. Table 3.4 confirms that the model accuracy level increases when

5The Q → SQL baseline we show reaches 82% vs. 79% reported in Scholak et al. [64]
as we used a more complete schema encoding and the instruction fine-tuned Flan-T5-XL
(3B parameters) model as opposed to the base T5-3B model.
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the QD-QPL alignment score increases. This indicates that the development
of a more robust question decomposer grounded in query decomposition for
training signal has the potential to improve semantic parsing performance.

QD-QPL Alignment Support Correct Exec Acc Avg QPL Gold Len.
[0.0, 0.4] 1 0 0 5.0
(0.4, 0.5] 19 4 21.1 4.6
(0.5, 0.6] 9 2 22.2 6.3
(0.6, 0.7] 43 9 20.9 5.0
(0.7, 0.8] 63 21 33.3 4.2
(0.8, 0.9] 93 33 35.5 4.6
(0.9, 1] 779 624 80.1 2.8

Table 3.4: Q+QD → QPL model trained with QDs predicted by Trained
Question Decomposer

In addition, we find that the <Q+QD → QPL> model produces correct
answers that were not computed by the direct <Q → QPL> model in 50 cases
(6 easy, 18 medium, 15 hard, 11 extra hard). This diversity is interesting
because, for hard and extra-hard cases, execution accuracy remains low (55%-
74%). Showing multiple candidates from different models may be a viable
strategy to indicate the lack of confidence the model has on these queries.

3.7 Error Analysis

We manually analyzed errors on the QPL programs predicted by the best
running model we have trained (see Table 3.3), which achieved an execution
match of 83.8%. We analyzed all the cases where the automatic execution
match procedure did not find an exact match between the result set returned
by the predicted QPL and the gold QPL (which itself was found to be an
exact match for the original Spider SQL statement).

In this manual analysis, we found a few cases where the result set was actually
a correct execution match given the question. The reasons why these cases
were not identified by the automatic result set comparison procedure are: (a)
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one of the queries included a distinct clause that prevented duplicate rows
in the resultset while the other resultset did not; (b) the name of one of the
computed columns was different across the two resultsets (e.g., the column
corresponding to an aggregate like max was named in different ways); (c)
the query made different assumptions about ties for aggregate values. For
example, the question “how many courses are taught by the youngest teacher”
assumes a single teacher is ranked as the youngest. When age is recorded in
years, the query can find multiple teachers that are ranked as “youngest.” In
most cases of this type, the Spider query returns a single row even though
ties can be found. In our assessment, we assumed this type of query is
ambiguous and accepted either the single row or multiple rows resultsets
as correct. The result of this manual classification is listed in the GitHub
repository associated with this work https://github.com/bgunlp/qpl.

For each case that we classified as an error, we manually classified the error
by first identifying the first line in the QPL program, which we identified as a
mistake. We then classified the reason why this line is wrong. This analysis
identified that the most challenging error type relates to queries involving
aggregate operations (group by and aggregated values such as count, sum or
max).

Table 3.5 shows the breakdown of errors by error types for the Q → QPL
model with Rich Schema Encoding. We hypothesize that errors related to
Join operations could be reduced by exploiting a more expressive description
of the schema structure and applying either a post-processing critique of the
generated QPL or enforcing stricter constraints in the QPL PICARD parser.
Similarly, a more detailed description of the content of encoded columns
could improve the Wrong Constant type.
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Error Type Error Err.% Explanation

Wrong aggregate 35 21% Error in Aggregate (sum, avg,
count, max, min)

Join 31 19% Wrong join (e.g., not on
Primary/Foreign key)

Wrong column 17 12% Output does not include the
right columns

Missing filter 17 10% Filter stage is missing
Wrong constant 15 9% Compare with wrong constant

(e.g., IsOfficial = ’Y’ vs. ’T’)
Wrong predicate 12 7% Error in selection predicate (e.g.,

> instead of <)
Lost 12 7% Predicted QPL is completely

wrong
Typing 7 4% Compare with constant of wrong

type (e.g., age = ’old’ vs. 20)
Extremum 4 2% Error in selecting top value (min

vs. max, for example)
Intersect 4 2% Error in Intersect operation
Wrong structure 3 2% QPL plan is not a connected tree
Syntax issue 3 2% Predicted QPL is not

syntactically valid
Except 2 1% Error in Except operation
Distinct 1 1% Missing distinct flag
Wrong table 1 1% Refers to the wrong table in the

schema

Grand Total 167

Table 3.5: Error Types: Breakdown of errors by error types

The Spider development set includes 20 different schemas. Table 3.6 shows
the breakdown of errors per schema. We observe that 5 schemas account for
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over 70% of the errors. These schemas do not follow best practices in data
modeling: keys are not declared, column naming is inconsistent, and value
encoding in some columns is non-standard (e.g., use of ’T’/’F’ for boolean
values). This finding again indicates that more expressive encoding of schema
information could improve performance on some of the more challenging
samples.

Schema ID Errors Samples Error Rate
battle_death 1 16 6%
car_1 27 92 29%
concert_singer 5 45 11%
course_teach 0 30 0%
cre_Doc_Template_Mgt 8 84 10%
dog_kennels 12 82 15%
employee_hire_evaluation 1 38 3%
flight_2 15 80 19%
museum_visit 2 18 11%
network_1 9 56 16%
orchestra 0 40 0%
pets_1 2 42 5%
poker_player 0 40 0%
real_estate_properties 1 4 25%
singer 1 30 3%
student_transcripts_tracking 16 78 21%
tvshow 5 62 8%
voter_1 3 15 20%
world_1 44 120 37%
wta_1 15 62 24%
Grand Total 167 1034 16%

Table 3.6: Breakdown of errors by Schema ID: 5 schemas out of the 20 present
in Spider’s development set account for 70% of the errors. These schemas
do not follow best practices in data modeling and lack proper foreign key
declarations.
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3.8 Conclusion

We presented a method to improve compositional learning of complex text-
to-SQL models based on QPL, a new executable and modular intermediary
language that is derived from SQL through semantic transformation. We
provide software tools to automatically translate SQL queries into QPL and
to execute QPL plans by translating them to CTE SQL statements. We also
compiled Spider-QPL, a version of Spider that includes QPL and Question
Decomposition for all examples.

Our experiments indicate that QPL is easier to learn using fine-tuned
LLMs (our text-to-QPL model achieves SOTA results on fine-tuned mod-
els on Spider dev set without db values, especially on hard and extra-hard
queries). On the basis of the computed QPL plans, we derived a new form of
Question Decomposition and trained a question decomposer that is sensitive
to the target database schema, in contrast to existing generic question de-
composers. Given a predicted QPL plan, we can derive a readable QD that
increases the interpretability of the predicted plan.

In future work, we plan to exploit the modularity of QPL plans for data
augmentation and explore multi-step inference techniques. We have started
experimenting with an auto-regressive model that predicts QPL plans line
by line. Our error analysis indicates that enhancing the model to further
take advantage of the database values and foreign keys has the potential to
increase the robustness of this multi-step approach. We are also exploring
whether users can provide interactive feedback on predicted QD as a way to
guide QPL prediction.
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CHAPTER 4

SQL vs. QPL Interpretability

One of the key differences between semantic parsing and QA is that semantic
parsing produces an explicit executable logical form, which can be analyzed
and executed. The execution returns the eventual answer to the user’s ques-
tion. In QA, the results are directly computed by the QA model. This
difference has an implication on the interpretability of the answers produced
by the models: one can analyze the code produced by a semantic parser (in
our case, the SQL or QPL query) and point to the places where it is different
from the user intent in the question. One can also demonstrate the difference
by executing the same query on databases containing different contents to
highlight the difference in meaning between the user intent and the predicted
query.

Using such techniques, it is possible to explain why a predicted query differs
from the desired one, sometimes in a subtle manner. For example, consider
the question: “find the name of the employee who was awarded the most
times in the best-employee award.” The question involves counting the num-
ber of times each employee received the award, sorting the list of employees
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based on this number, and then selecting the name of the employee that
has the highest number of awards. When there are ties (multiple employees
got the award the same number of times, for example, John and Mary), the
answer should list multiple names. An answer with a single name would prob-
ably also be acceptable if it is augmented with an explanation (i.e., “John
received the award 5 times, Mary did as well”). If a predicted query to this
question returns “Mary” and the gold answer lists “John,” then the execution
match procedure will fail without noting that both answers are equivalent.

More generally, when we analyze and compare queries written in a formal
language (either SQL or QPL in our case), we can pinpoint differences that
are easier to explain than when comparing the computed result set deno-
tations. In this chapter, we present a user experiment that aims to assess
whether programmers find it easier to perform such query comparisons on
QPL than on SQL.

In order to probe whether QPL is easier to interpret by non-expert SQL
users, we organized a user experiment. We selected a sample of 22 queries of
complexity Hard and Extra-Hard. We collected predicted SQL queries and
QPL plans for the queries, with half correct (producing the expected output)
and half incorrect. We sampled the incorrect queries from the predictions
of our text-to-QPL model so that they would be realistic queries but still
incorrect queries. In other words, this is an adversarial contrastive test where
the incorrect queries look very similar to the intended queries and are complex
queries.

Four volunteer software engineers with over five years of experience partic-
ipated in the experiment. We asked them to determine whether a query
in either SQL or QPL corresponded to the intent of the natural language
question. The participants were each exposed to half cases in QPL and half
in SQL, half correct and half incorrect. We measured the time it took for
each participant to make a decision for each case. Results are reported in
Table 4.1.

The participants all know SQL (and use it in their work) but have never
heard of QPL (which was introduced in this work and to which they are not
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related). We introduced the participants to QPL through a series of examples
of increasing complexity and with a short explanation (see Appendix E).

Type Gold label Time Correct

QPL Incorrect query 89% 53%
Correct query 100% 79%

67%

SQL Incorrect query 102% 50%
Correct query 101% 25%

34%

Avg time QPL 123s
SQL 132s

Table 4.1: User experiment: 20 (question, query) pairs are shown to 4 users
- half in QPL and half in SQL. Half are correct, and half are incorrect. The
table reports how long users assessed, on average, each query and how often
they were right in assessing the correctness of the query.

The results in Table 4.1 indicate that the participants were correct about
QPL in 67% of the cases vs. 34% of the SQL cases, supporting the hypothesis
that validating the alignment between a question and query is easier with
QPL than with SQL (p < 0.06).

We did not observe significant variation in the time it took for participants to
assess QPL vs. SQL queries (on average, 132 seconds for SQL vs. 123 seconds
for QPL) and no difference in time for prediction of correct vs. incorrect
queries and correct vs. incorrect judgment.

Two significant results can be observed:

• The judgment by programmers on SQL queries is extremely low: in
only one-third of the cases, the programmers correctly assess that an
SQL query matches the intent of a natural language question. Con-
sider that the best available models for text-to-SQL reach about 90%
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accuracy on all queries but only about 75% on complex queries. Com-
bining these two factors, it is clear that text-to-SQL models should not
be put in production until serious work is performed on explainability
and verification of the predicted queries.

There are well-known reasons why complex SQL queries are hard to in-
terpret for programmers. The most significant one is that the syntactic
order of the components within SQL queries does not match the logical
order. For example, SELECT is (usually) the last operation that hap-
pens on the result, yet it is the first token in an SQL query. The order
of GROUP BY aggregations is confusing with respect to the order of
other operations, i.e., whether an aggregation has already happened
or not is not always clear syntactically. The blog post “A Beginner’s
Guide to the True Order of SQL Operations” by Lukas Eder1 iden-
tifies many complexities associated to the interplay between different
SQL syntactic devices, in particular, group-by, order-by, distinct and
computed expressions.

This accidental complexity is avoided in QPL because the different
stages of the computation are split into separate QPL sentences (ag-
gregation, ordering, filtering, join).

• Programmers performed better at aligning user intent of questions with
QPL queries even though they have not learned or used QPL earlier.
This desirable benefit is a result of the design decision to align QPL
with SQL for primitive operations. Yet, further research is required
to improve the overall usability of QPL by programmers by studying
how programmers actually produce QPL programs or edit them to fix
faulty queries.

In conclusion, this small-scale user experiment points to the fragility of exist-
ing text-to-SQL models in terms of interpretability and explainability. QPL
improves the situation on this front, but the results remain low (only two-
thirds of the queries are correctly assessed by programmers). In the longer

1See https://blog.jooq.org/a-beginners-guide-to-the-true-order-of-sql-operations/
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term, these results point to the need to help programmers analyze complex
data retrieval needs. We suspect that the natural language questions are
also not understood in a uniform manner by different programmers and that
many forms of ambiguity (similar to the tie case discussed above or to the op-
erational interpretation of complex SQL schemas in terms of cardinality or
key relations) hide additional complexity when interpreting complex ques-
tions. Future work should focus on the explainability of text-to-SQL to a
larger extent.

Below is an example of a question, schema, and SQL query triplet in which
the SQL query is correct given the question and schema. All participants
have labeled this triplet as wrong, i.e., the SQL query does not match the
question and schema.

Schema: world_1
city : ID , Name , CountryCode , District , Population
sqlite_sequence : name , seq
country : Code , Name , Continent , Region , SurfaceArea , IndepYear ,

Population , LifeExpectancy , GNP , GNPOld , LocalName ,
GovernmentForm , HeadOfState , Capital , Code2

countrylanguage : CountryCode , Language , IsOfficial , Percentage

Question:
What are the countries that have greater
surface area than any country in Europe?

SQL Query:
SELECT Name FROM country
WHERE SurfaceArea > (
SELECT MIN(SurfaceArea) AS Min_SurfaceArea
FROM country
WHERE Continent = 'Europe'

)
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The equivalent QPL to this query is:

#1 = Scan Table [ country ] Output [ SurfaceArea , Continent ]
#2 = Filter [ #1 ] Predicate [ Continent = 'Europe' ]

Output [ SurfaceArea ]
#3 = Aggregate [ #2 ] Output [ MIN(SurfaceArea) AS Min_SurfaceArea ]
#4 = Scan Table [ country ] Output [ Name , SurfaceArea ]
#5 = Join [ #3 , #4 ] Predicate [ #4.SurfaceArea > #3.Min_SurfaceArea ]

Output [ #4.Name ]

47



CHAPTER 5

Cross-Lingual Semantic Parsing and Schema Linking
Robustness

5.1 Motivation

When analyzing the types of errors performed by semantic parsers, one can
distinguish two sources of complexity: (a) mapping elements in the ques-
tion to specific schema items in the target query (b) building a query with
structure and semantics appropriate to the intent of the question. These two
aspects correspond to the lexical vs. syntax-semantics aspects of the task as
understood in machine translation. In the case of Text-to-SQL, these two
aspects are usually described as schema linking and structure mapping.

The previous chapters focused on the structure mapping side of the task: the
design of QPL aimed at improving compositional generalization to queries of
increasing structural complexity.

This chapter focuses on the schema linking aspect. Schema linking consists
of recognizing references to specific schema items (table and column names)
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and database values within the natural language question. For example,
consider the question in Fig. 5.1 and the corresponding SQL query. Schema
linking consists of identifying that the question word country refers to the
column schema item Airlines.country, the word Airline to the table name
Airlines, and the span “JetBlue Airways” to a value.

Cross-lingual semantic parsing consists of asking a question in a language that
is different from the one used in the query language or in the database values.
For example, given the same database, consider the case where the same
question is asked in Hebrew. In this case, the lexical distance between the
words in the question and the schema items or database values is increased,
making the task of schema linking much more challenging.

In this chapter, we explore the impact of the cross-lingual setting on the
performance of the Text-to-QPL task. We compare different strategies to
cope with cross-lingual questions: training a Hebrew-to-SQL model on small
quantities of manually translated questions or using machine translation in
different configurations at fine-tuning or inference time. We finally empiri-
cally evaluate the robustness of the models to perturbations in the question
formulation induced by roundtrip translation.

English Question
Which country does Airline “JetBlue Airways” belong to?
Which country[Airlines.country] does Airline[Airlines] “JetBlue Airways”[value] belong to?

Hebrew Question
איירווייז? בלו ג'ט התעופה חברת שייכת מדינה לאיזו
le-eizo medina shayekhet hevrat ha-te’ufa jet blu airways?
To-which nation belongs company the-flight jet blu airways?
To-which nation[Airlines.country] belongs [company the-flight][Airlines] [jet blu airways][value]?

SQL

SELECT Country
FROM Airlines
WHERE Airline = "JetBlue Airways"

Figure 5.1: Schema Linking Example

Most semantic parsing research operates over English datasets. Cross-lingual
semantic parsing refers to the task of translating a question in source language
L1 to a target semantic formalism, which is based on a different language L2.
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In the specific case of cross-lingual text-to-SQL, three components can be in
different languages: the question, the schema, and the values stored in the
database. In cross-lingual settings, we will see the question in the source
language of interest, but when it comes to the schema and SQL, there are
three approaches: one option is to translate everything, having all schema
items and SQL values be in the target language; another approach is to keep
the schema intact, but have SQL values be in the target language; finally,
we can keep both schema and SQL completely untouched, thus having only
the question in a language other than English, with schema and SQL values
kept in English. These options are summarized in Table 5.1.

5.2 Starting Points

Dataset Question Schema Items DB Values
Spider English English English
CSpider Chinese English Chinese
VSpider Vietnamese Vietnamese Vietnamese
MultiSpider EN, DE, FR, ES, JA, ZH, VI Same Same
HSpider Hebrew English English

Table 5.1: Cross-lingual Text-to-SQL Variants

In this chapter, we operate under the third setting, the most challenging
in terms of cross-lingual schema linking, and we run experiments with He-
brew, which also poses acute problems for value recognition because Hebrew
uses a different script than English and proper names must be transliterated
using Hebrew letters, which introduces wide variability. We explore three
main questions: (1) can we learn a cross-lingual semantic parser with limited
resources? (2) in a very low resource setting, are manually translated exam-
ples better for training than machine-translated examples? (3) how robust
is schema linking to round-trip translation noise?
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5.2.1 Cross and Multilingual Datasets

Shortly after the release of the Spider dataset [88], Chinese and Vietnamese
versions of Spider (CSpider [51] and VSpider [71]) were created. CSpider was
manually translated and is roughly the same size as the original Spider. An
important choice made during the translation of CSpider was only to trans-
late questions and SQL values, as English schemas with Chinese contents are
prevalent in the industry. An example from CSpider looks like:

SELECT Country FROM AIRLINES WHERE Airline = " 深圳航空公司".

VSpider is also completely manually translated, and all questions and schema
items are translated into Vietnamese. An example from VSpider looks like:

select count ( * ) from ca sĩ.

Recently, the MultiSpider dataset [16] introduced versions of Spider trans-
lated into six additional languages: German, French, Spanish, Japanese,
Chinese, and Vietnamese. The data was obtained by first using automatic
machine translation and manual post-editing. The MultiSpider dataset con-
tains translated schema items and database values. In that sense, Multi-
Spider is a multi-lingual dataset but not a cross-lingual one (leading to less
acute complexity in schema linking).

5.2.2 Schema-linking Robustness Datasets

In addition to the two cross-lingual Spider-derived datasets, three new datasets
were designed to test the robustness of text-to-SQL models to question per-
turbation: Spider-Syn [24], Spider-DK [25], and Spider-Realistic [12].

Spider-Syn provides both a training set and a development set with SQL
queries identical to the original Spider, where the questions use synonyms
for schema items. For example, the original Spider question “How many
singers do we have?” is transformed into “How many vocalists do we have?”.

Spider-DK provides only a development set with new database schemas and
questions requiring domain knowledge. For example, the utterance “Show
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name, country for all singers ordered by age from the oldest to the youngest.”
is mapped to the query SELECT name , country FROM singer ORDER BY
birthday ASC and a text-to-SQL will need to know that birthday is related
to age.

Based on the observation that many original Spider questions are biased and
often use schema items in a non-natural manner, Spider-Realistic manually
modifies the original Spider development set questions to remove explicit
mention of column names while keeping the SQL queries unchanged.

All three papers observed sharp drops in performance when running existing
Spider models on the perturbed datasets. These experiments, however, date
from 2020-2021 and predate more robust models built on top of LLMs. We re-
run some of these experiments in this Chapter to update these observations.

The papers also experimented with mitigation methods to overcome the per-
formance drop induced by question perturbation. Spider-Syn proposed two
approaches: Multi-Annotation Selection (MAS) and adversarial training. In
Multi-Annotation Selection, the schemas are annotated with synonyms for
each schema item. During inference, if the question contains a word or phrase
that is a known synonym, that synonym will be replaced in the question be-
fore being input into the model. The main advantage of this approach is
that it does not require further training. MAS can be done either manually
or automatically, and Gan et al. [24] show that manual MAS leads to better
performance. The other approach, adversarial training, uses BERT-Attack
[45] to create adversarial examples and then train a model on the adversarial
examples. In their experiments, Gan et al. [24] show that training on ad-
versarial examples is not as beneficial as manual MAS and is comparable to
training the model on the Spider-Syn dataset.

5.2.3 Models for Cross-lingual Semantic Parsing

The XRICL framework [69] uses in-context learning (ICL) [5] for the cross-
lingual Text-to-SQL task. In-context learning is a prompting technique
for LLMs whereby the user provides the LLM via a prompt with a list of
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question-and-answer pairs and finishes the prompt with a question of the
same nature as the examples. Given the context in the prompt, the com-
pletion of the LLM should then answer the question. XRICL first uses mT5
[82], a multi-lingual pre-trained language model, and fine-tunes it to select
N English question-and-SQL pairs to be used for ICL given a non-English
question. The N examples are then reranked, and the top K examples are
selected for the prompt. To these top K examples, XRICL adds a translation
example as a Chain-of-Thought [76] and the final question. The LLM should
then translate the question in the target language to English and produce
the correct SQL using the K examples. In addition to the XRICL frame-
work, the paper also translates Spider into Farsi and Hindi, along with using
CSpider and VSpider for further evaluation. Experimental results indicate
the ICL strategy improves over zero-shot baselines for cross-lingual results,
but the gap in performance with mono-lingual (English) results is notable
(more than 20% delta for cross-lingual questions).

Sherborne and Lapata [67] propose the “Cross-Lingual Generalization Rep-
tile” (XG-Reptile) meta-learning algorithm for cross-lingual semantic pars-
ing. The main goal of this algorithm is to optimize for cross-lingual gen-
eralization using less training data per new language without hurting the
performance of other languages. The approach demonstrates the potential
to indeed reduce the size of the training set for adding new languages to an
existing semantic parser by generalizing from one language to another, but
absolute performance on the low-resource language remains low. In our ex-
periments, we find that using automatic language translation achieves higher
performance on the text-to-SQL task than the low-resource adaptation ap-
proach.

The “Representation Mixup Framework” (REX) [68] is introduced to bridge
the gap between, on the one hand, using automatic translation to translate
a target language to English and then using an English text-to-SQL model
and, on the other hand, training a model “from scratch” on manually trans-
lated training data. It uses a general encoding layer, a transition layer, and a
target-centric layer to best use English translations in the model. For every

53



target language, the model is trained by first initializing the weights with
the weights of an English text-to-SQL model, then training the model using
manually annotated data in the target language, in addition to English trans-
lations, which can be used by the pre-trained English model. The framework
achieves competitive results with state-of-the-art on both CSpider and VSpi-
der. Our experiments on Hebrew with HSpider confirm that the combination
of low-resource training and automatic translation brings good performance.

5.3 Methods

We investigate the overall question of robustness to question variability in
text-to-SQL through two sets of experiments: (a) we assess the performance
of different strategies on cross-lingual text-to-SQL and text-to-QPL on a
Hebrew Spider translation dataset which we constructed; (b) we measure
the robustness of the best-trained models on text-to-QPL to perturbations
obtained by roundtrip translation (EN → HE → EN).

5.3.1 Cross-lingual Text-to-QPL

Low-resource Training

To answer whether we can learn a cross-lingual semantic parser with few
resources, we use mT5-XL [82], a multilingual, 3 billion-parameter model that
was trained, among other languages, on both English and Hebrew. To obtain
Hebrew training examples parallel to our Spider-QPL dataset, we manually
translate a small subset of 500 examples and also automatically translate
the entire Spider training dataset. The 500 examples were chosen randomly
from the training set, keeping the same ratio of easy/medium/hard/extra-
hard examples as in the full training set. The translation was done by myself
and my advisor. We fine-tune the model on both languages, varying the
number of training examples between every training. In total, we fine-tune
nine different mT5 models: using 500, 1,000, 3,000, and ~6,500 training
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examples on both English and Hebrew and another model trained on the
500 manually translated examples. We then compare the execution accuracy
between those nine models. The models are summarized in Fig. 5.2.

Figure 5.2: mT5 Fine-tuned Models

Inference Time Translation

In order to evaluate model performance given Hebrew questions and English
schema items and values, we use three methods: (1) use an mT5-XL-based
model fine-tuned directly on Hebrew questions; (2) translate the Hebrew
question to English using GPT-4 [56] and the prompt shown in Fig. 5.3,
which aims at reducing the distance of the English question from the terms
used in the database schema, and use the best English Q → QPL model
(cost of translation was $0.69 in January 2024); (3) translate the Hebrew
question using Google Translate [81], i.e., without a constraining prompt,
and use the best English Q → QPL model. A graphical summary of these
methods is shown in Fig. 5.4.
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I need to translate questions asked in Hebrew into English
about a specific SQL database schema where the tables and columns
are specified in English.

Make sure to use as often as possible English words that appear
within the SQL schema.

### SQL Schema

{sql_schema}

### Hebrew Question

{hebrew_question}

### English Question

Figure 5.3: GPT-4 Translation Prompt

Figure 5.4: Cross-lingual QPL Generation Strategies

5.3.2 Schema Linking Robustness

For robustness checking, we try three combinations of evaluation datasets to
check how robust a model is to small changes in the input questions. More
specifically, we test the schema linking capabilities of the model by changing
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schema items in the question. The three datasets we use are Spider-Syn [24],
Spider-RT, and Spider-Syn-RT. Spider-RT and Spider-Syn-RT are datasets
we made by translating the English questions to Hebrew and back to English
using machine translation. Spider-RT uses the original Spider questions, and
Spider-Syn-RT uses the Spider-Syn English questions (Fig. 5.5).

Figure 5.5: Robustness Datasets

5.4 Experiments and Results

5.4.1 Cross-lingual Text-to-QPL

Table 5.2 summarizes the results of the nine models described by Fig. 5.2.
There’s no difference between manual and automatic translation in the very
low-resource setting of only 500 training examples (mT5_He_500_HT and
mT5_He_500). This means that, at least for Hebrew, manually translating
the entire Spider dataset might not be beneficial (as done in CSpider). In-
stead, it seems effective to automatically translate the dataset and then have
proficient Hebrew speakers verify the translations (as done in MultiSpider).

All training sets of each language were chosen to have the same difficulty
distribution as in the entire dataset to ensure that the models have “equal
opportunity” in learning both simple and complex QPL. And yet, we see that
the absolute performance increases as the amount of training data increases
(Fig. 5.6 and Fig. 5.7), both for English and for Hebrew. We observe that for
very low training rates (500, 1000 samples), PICARD improves performance
by large gaps with respect to the corresponding non-PICARD inference mode
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(as much as 9.4%). This gap indicates that with few training samples, the
model does not learn the syntax of the target language, but as more training
samples are available (reaching 6,500), the gap reduces to about 3% (com-
parable to the gap of about 2% observed on the Spider-QPL model with
Flan-T5).

Finally, we observe that both for English and Hebrew, the mT5-based models
improve in a similar manner as more training is available (see Figure 5.6) and
that the gap between English and Hebrew reduces from 8.5% to 3.7%. This
indicates that a multi-lingual base model like mT5 can learn a cross-lingual
model based on automatically translated data with an acceptable gap in
performance compared to the source English. Yet, the overall performance
lags below the top model that was learned with a mono-lingual base model
of the same size (3 billion parameters, Flan-T5-XL) with 72% for English /
68.3% for Hebrew vs. 80% for English with Flan-T5-XL (3B parameters).

Figure 5.8, Table 5.3, and Table 5.4 show error distribution across diffi-
culties and the development schemas for the English models, respectively.
Figure 5.9, Table 5.5, and Table 5.6 show the same for the Hebrew mod-
els. Lines marked as bold are “problematic” schemas, i.e., with an error rate
greater than 40%. We identify the same problematic schemas that were ob-
served in the original Spider-QPL experiments, with error rates worsened in
the cross-lingual setting.
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Model Execution Accuracy

w/o PICARD w/ PICARD

mT5_En_500 36.65% 44.78% (+ 8.13%)
mT5_En_1000 51.35% 60.74% (+ 9.39%)
mT5_En_3000 62.86% 69.05% (+ 6.19%)
mT5_En_All 68.09% 71.95% (+ 3.86%)

mT5_He_500_HT 31.33% 36.27% (+ 4.94%)

mT5_He_500 31.53% 36.27% (+ 4.69%)
mT5_He_1000 43.81% 52.32% (+ 8.51%)
mT5_He_3000 60.35% 65.67% (+ 5.32%)
mT5_He_All 65.09% 68.28% (+ 3.19%)

Table 5.2: Execution Accuracy with and without PICARD for All mT5-XL
Models
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Figure 5.6: Execution Accuracy by Number of Training Examples
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Figure 5.7: Error Rate

500 Training Samples

Difficulty Errors Samples Error Rate

Easy 71 248 28.6%
Medium 214 446 48.0%
Hard 126 174 72.4%
Extra-hard 152 166 91.6%

Total 563 1034 54.4%

1000 Training Samples

Difficulty Errors Samples Error Rate

Easy 43 248 17.3%
Medium 141 446 31.6%
Hard 90 174 51.7%
Extra-hard 120 166 72.3%

Total 394 1034 38.1%

3000 Training Samples

Difficulty Errors Samples Error Rate

Easy 35 248 14.1%
Medium 104 446 23.3%
Hard 68 174 39.1%
Extra-hard 100 166 60.2%

Total 307 1034 29.7%

All Training Samples

Difficulty Errors Samples Error Rate

Easy 31 248 12.5%
Medium 81 446 18.2%
Hard 71 174 40.8%
Extra-hard 92 166 55.4%

Total 275 1034 26.6%

Figure 5.8: Errors by Difficulty on English Models

5.4.2 Schema Link Robustness

In Table 5.7, we observe that the effect of a small perturbation in the input
question significantly affects model performance with QPL as observed on
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500 Training Samples

Difficulty Errors Samples Error Rate

Easy 93 248 37.5%
Medium 271 446 60.8%
Hard 137 174 78.7%
Extra-hard 156 166 94.0%

Total 657 1034 63.5%

1000 Training Samples

Difficulty Errors Samples Error Rate

Easy 61 248 24.6%
Medium 202 446 45.3%
Hard 94 174 54.0%
Extra-hard 126 166 75.9%

Total 483 1034 46.7%

3000 Training Samples

Difficulty Errors Samples Error Rate

Easy 48 248 19.4%
Medium 126 446 28.3%
Hard 69 174 39.7%
Extra-hard 104 166 62.7%

Total 347 1034 33.6%

All Training Samples

Difficulty Errors Samples Error Rate

Easy 41 248 16.5%
Medium 111 446 24.9%
Hard 73 174 42.0%
Extra-hard 95 166 57.2%

Total 320 1034 30.9%

Figure 5.9: Errors by Difficulty on Hebrew Models

SQL. We also see that combining two perturbations (round-trip translation
and synonym substitution) causes the performance to decrease even more,
which indicates that each type of noise presents a different linguistic chal-
lenge. The overall drop in performance is as large as 11.3% for the combined
forms of perturbation. This significant drop demonstrates that the task of
schema linking remains a significant challenge that requires specific attention
beyond the problems of compositional generalization.

Dataset Execution Accuracy

Spider-QPL 80.0%
Spider-QPL-RT 74.4%
Spider-QPL-Syn 73.2%
Spider-QPL-Syn-RT 68.7%

Table 5.7: Execution Accuracy on Robustness Datasets

5.5 Conclusion

The experiments and results presented in this chapter highlight several in-
sights into the challenges and possibilities of cross-lingual semantic parsing
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500 Training Samples

Schema Errors Samples Error Rate

battle_death 11 16 68.8%
car_1 68 92 73.9%
concert_singer 25 45 55.6%
course_teach 12 30 40.0%
cre_Doc_Template_Mgt 37 84 44.0%
dog_kennels 60 82 73.2%
employee_hire_evaluation 16 38 42.1%
flight_2 41 80 51.2%
museum_visit 11 18 61.1%
network_1 22 56 39.3%
orchestra 13 40 32.5%
pets_1 20 42 47.6%
poker_player 9 40 22.5%
real_estate_properties 1 4 25.0%
singer 8 30 26.7%
student_transcripts_tracking 52 78 66.7%
tvshow 24 62 38.7%
voter_1 7 15 46.7%
world_1 97 120 80.8%
wta_1 29 62 46.8%

Total 563 1034 54.4%

1000 Training Samples

Schema Errors Samples Error Rate

battle_death 9 16 56.2%
car_1 57 92 62.0%
concert_singer 10 45 22.2%
course_teach 0 30 0.0%
cre_Doc_Template_Mgt 23 84 27.4%
dog_kennels 38 82 46.3%
employee_hire_evaluation 6 38 15.8%
flight_2 33 80 41.2%
museum_visit 8 18 44.4%
network_1 17 56 30.4%
orchestra 6 40 15.0%
pets_1 12 42 28.6%
poker_player 0 40 0.0%
real_estate_properties 1 4 25.0%
singer 3 30 10.0%
student_transcripts_tracking 42 78 53.8%
tvshow 14 62 22.6%
voter_1 2 15 13.3%
world_1 87 120 72.5%
wta_1 26 62 41.9%

Total 394 1034 38.1%

Table 5.3: Errors by Schema on English Models (500 and 1000 Training
Samples)

and schema linking robustness.

Our exploration into the cross-lingual text-to-QPL task, particularly with
the focus on Hebrew, has shown that, while it is completely possible to fine-
tune a multilingual pre-trained language model such as mT5, on the Hebrew
text-to-QPL task and achieve reasonable performance (3.7% decrease from
English using the same model), it is preferable to use a performant English-
only pre-trained language model and automatic translation to achieve better
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3000 Training Samples

Schema Errors Samples Error Rate

battle_death 6 16 37.5%
car_1 47 92 51.1%
concert_singer 6 45 13.3%
course_teach 2 30 6.7%
cre_Doc_Template_Mgt 17 84 20.2%
dog_kennels 32 82 39.0%
employee_hire_evaluation 1 38 2.6%
flight_2 29 80 36.2%
museum_visit 5 18 27.8%
network_1 11 56 19.6%
orchestra 1 40 2.5%
pets_1 8 42 19.0%
poker_player 2 40 5.0%
real_estate_properties 1 4 25.0%
singer 1 30 3.3%
student_transcripts_tracking 35 78 44.9%
tvshow 13 62 21.0%
voter_1 2 15 13.3%
world_1 64 120 53.3%
wta_1 24 62 38.7%

Total 307 1034 29.7%

All Training Samples

Schema Errors Samples Error Rate

battle_death 6 16 37.5%
car_1 43 92 46.7%
concert_singer 7 45 15.6%
course_teach 0 30 0.0%
cre_Doc_Template_Mgt 12 84 14.3%
dog_kennels 29 82 35.4%
employee_hire_evaluation 3 38 7.9%
flight_2 27 80 33.8%
museum_visit 3 18 16.7%
network_1 12 56 21.4%
orchestra 2 40 5.0%
pets_1 8 42 19.0%
poker_player 3 40 7.5%
real_estate_properties 1 4 25.0%
singer 1 30 3.3%
student_transcripts_tracking 29 78 37.2%
tvshow 11 62 17.7%
voter_1 2 15 13.3%
world_1 60 120 50.0%
wta_1 16 62 25.8%

Total 275 1034 26.6%

Table 5.4: Errors by Schema on English Models (3000 and All Training
Samples)

performance (73.4% vs. 68.3%) without the need to fine-tune on a Hebrew
dataset. Furthermore, we saw that in the low-resource setting, using 500
examples of manually translated questions does not help the model learn
better. While not to say that quantity beats quality, it would appear that
current automatic translation solutions are “good enough” for this task.

The robustness experiments illuminate the challenges in schema linking un-
der question perturbation. The noticeable drop in performance in the face
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500 Training Samples

Schema Errors Samples Error Rate

battle_death 10 16 62.5%
car_1 79 92 85.9%
concert_singer 27 45 60.0%
course_teach 13 30 43.3%
cre_Doc_Template_Mgt 45 84 53.6%
dog_kennels 63 82 76.8%
employee_hire_evaluation 18 38 47.4%
flight_2 39 80 48.8%
museum_visit 15 18 83.3%
network_1 36 56 64.3%
orchestra 19 40 47.5%
pets_1 27 42 64.3%
poker_player 22 40 55.0%
real_estate_properties 2 4 50.0%
singer 12 30 40.0%
student_transcripts_tracking 65 78 83.3%
tvshow 23 62 37.1%
voter_1 11 15 73.3%
world_1 97 120 80.8%
wta_1 34 62 54.8%

Total 657 1034 63.5%

1000 Training Samples

Schema Errors Samples Error Rate

battle_death 7 16 43.8%
car_1 71 92 77.2%
concert_singer 20 45 44.4%
course_teach 9 30 30.0%
cre_Doc_Template_Mgt 26 84 31.0%
dog_kennels 45 82 54.9%
employee_hire_evaluation 6 38 15.8%
flight_2 32 80 40.0%
museum_visit 8 18 44.4%
network_1 21 56 37.5%
orchestra 10 40 25.0%
pets_1 22 42 52.4%
poker_player 12 40 30.0%
real_estate_properties 3 4 75.0%
singer 6 30 20.0%
student_transcripts_tracking 49 78 62.8%
tvshow 17 62 27.4%
voter_1 10 15 66.7%
world_1 76 120 63.3%
wta_1 33 62 53.2%

Total 483 1034 46.7%

Table 5.5: Errors by Schema on Hebrew Models (500 and 1000 Training
Samples)

of synonyms and round-trip translation highlights the sensitivity of current
models to variations in question formulation. This emphasizes the need for
more sophisticated approaches that can better handle linguistic variability
and understand the underlying semantics of questions, regardless of their
surface form. This conclusion supports the need to study further data aug-
mentation methods that focus on introducing more variability on the side of
questions with various paraphrasing devices.
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3000 Training Samples

Schema Errors Samples Error Rate

battle_death 5 16 31.2%
car_1 53 92 57.6%
concert_singer 9 45 20.0%
course_teach 3 30 10.0%
cre_Doc_Template_Mgt 22 84 26.2%
dog_kennels 30 82 36.6%
employee_hire_evaluation 3 38 7.9%
flight_2 24 80 30.0%
museum_visit 6 18 33.3%
network_1 15 56 26.8%
orchestra 1 40 2.5%
pets_1 12 42 28.6%
poker_player 5 40 12.5%
real_estate_properties 1 4 25.0%
singer 2 30 6.7%
student_transcripts_tracking 46 78 59.0%
tvshow 12 62 19.4%
voter_1 5 15 33.3%
world_1 70 120 58.3%
wta_1 23 62 37.1%

Total 347 1034 33.6%

All Training Samples

Schema Errors Samples Error Rate

battle_death 6 16 37.5%
car_1 49 92 53.3%
concert_singer 7 45 15.6%
course_teach 0 30 0.0%
cre_Doc_Template_Mgt 13 84 15.5%
dog_kennels 34 82 41.5%
employee_hire_evaluation 4 38 10.5%
flight_2 32 80 40.0%
museum_visit 4 18 22.2%
network_1 14 56 25.0%
orchestra 2 40 5.0%
pets_1 9 42 21.4%
poker_player 4 40 10.0%
real_estate_properties 1 4 25.0%
singer 2 30 6.7%
student_transcripts_tracking 37 78 47.4%
tvshow 10 62 16.1%
voter_1 4 15 26.7%
world_1 67 120 55.8%
wta_1 21 62 33.9%

Total 320 1034 30.9%

Table 5.6: Errors by Schema on Hebrew Models (3000 and All Training
Samples)
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CHAPTER 6

Conclusion

6.1 Main Contributions

In this work, we set out to answer three main research questions:

RQ1 How can we improve the compositional generalization of text-to-SQL
models?

RQ2 How can we make the output of these models more interpretable to
users?

RQ3 How robust are models to question formulation variations in a multi-
lingual setting?

We introduced Query Plan Language (QPL), an intermediate language that
bridges the gap between natural language questions and complex SQL queries
by decomposing queries according to the operational semantics of the re-
trieval process. The work is summarized in Eyal, Bachar, Haroche, and
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Elhadad [18], Eyal, Mahabi, Haroche, Bachar, and Elhadad [19], and Eyal
and Elhadad [17].

In Chapter 3, we reported on experiments indicating that QPL is easier to
learn than SQL for pre-trained language models using the same neural archi-
tecture. We also delved into the subject of question decomposition for QPL
generation and established a benchmark for future work where semantically
complex questions in natural language can be decomposed into a sequence
of simpler questions.

Chapter 4 showed that neural architectures are not alone in preferring QPL
over SQL, and programmers share the same sentiment. We described a user
experiment which points to the difficulty programmers feel when aligning
complex data retrieval queries with the intent of semantically challenging
questions. The results indicate that a modular language like QPL holds
the promise to be more interpretable than a compact language like SQL.
This small-scale study points to promising future work to improve QPL’s
interpretability.

Finally, in Chapter 5, we shifted our focus from English as the main language
for text-to-QPL to a different source language, namely Hebrew, and explored
how well cross-lingual text-to-QPL performs in its hardest setting: English
schema items and values with questions in a different language. We saw that
advancements in machine translation allow us to train a formidable Hebrew
text-to-QPL model by automatically translating Hebrew questions to English
and using our best English text-to-QPL model. The experiments, however,
also demonstrate that current models suffer from low robustness in aspects
related to schema linking when the questions exhibit high variability with
respect to the terms used in the database schema.
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6.2 Future Work

6.2.1 Text-to-SQL Improvements

In addition to the work presented here, we believe the QPL approach has
additional potential, which we wish to explore.

With the shortcomings of the Spider dataset, more challenging datasets have
emerged, such as BIRD-SQL [44] and UNITE [39], which have more realistic
and complex questions and queries across different domains. As shown in
this work, QPL works well for complex questions, and we would like to verify
that the same applies to these more challenging datasets. In addition to
cross-domain benchmarks, we would also like to use QPL in specific complex
domains, such as Electronic Health Records [41].

For a more extensive study of compositional generalization, a compositional
split should be created and evaluated based on the characteristics of QPL,
using techniques such as DBCA [36].

With the rise of LLMs, we would like to enable users to interact with a model
that will generate QPL incrementally, according to the user’s specifications.
This would also require an auto-regressive text-to-QPL model, which, given
a question and the first steps of a QPL, can then produce the next step.

To create more training data to train text-to-QPL models, we need an exten-
sive data augmentation method to synthesize new question-and-QPL pairs
by composing smaller QPL into larger ones and synthesizing a question from
the new QPL. QPL enables simple syntactic transformations based on the
modular structure of the language, which lends itself to effective scrambling
without semantic impact. On the side of questions, paraphrasing decom-
posed questions also promises to yield effective variations.

Finally, we would like to explore disentangling the knowledge for planning
the QPL (what operators and in what order) from the knowledge required
to run the QPL based on a specific schema.
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6.2.2 General Semantic Parsing Directions

Text-to-SQL is a specific instance of the more general task of Semantic Pars-
ing. In this more general setting, the task consists of mapping natural lan-
guage questions and utterances to expressions in a formal language with
known formal semantics.

Other key examples of semantic parsing include text-to-code, where the
target language is represented as Abstract Syntax Trees (AST) in the se-
lected programming language, or different query languages, in particular over
knowledge graphs with languages like SparQL [2, 3] or Cypher [21].

Our main contribution with the definition of QPL is a focus on the following
principle: it is beneficial when researching semantic parsing to question the
level of abstraction that is implicitly adopted in the definition of the tar-
get formal language. The definition of intermediary languages that mediate
the translation from natural language and the target formal language has
multiple benefits:

1. Ease of learning: intermediary languages may be easier to map to
the source natural language utterances because they have a similar
syntax or because their modular nature leads to better generalization
capabilities.

2. Interpretability: modular intermediary languages can be broken down
into smaller units, which leads to better analysis of which part of the
target semantic form is erroneous in case of breakdown.

3. Grounded question decomposition: the strategy of learning to
decompose a complex question into sub-questions has been researched
in many forms. The definition of modular intermediary languages for
semantic parsing allows us to map complex questions to sub-questions
on the basis of the target language. This general data augmentation
strategy allows us to define datasets of question decompositions where
the decomposition is grounded in the semantics of the target oanguagel
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In recent followup work [50], the idea of grounded question decomposition
has been explored by defining multi-step prompting strategies to solve text-
to-QPL: a top-down question decomposer is learned to decompose complex
natural language questions into an abstract query plan; this abstract query
plan is then transformed bottom-up into a fully fleshed QPL program. This
multi-step complex prompting strategy leads to marked improvements when
deadling with complex questions.

The work of Bachar [1] compares different concrete syntaxes for QPL pro-
grams in the context of text-to-QPL. The comparison of bottom-up and
top-down encodings of QPL ASTs leads to different ways in which a text-to-
QPL model is trained. An ensemble model combining text-to-QPL models
trained each on a different concrete syntax (JSON, YAML, parenthesized
QPL with embedded sub-commands).

We consider that training models on QPL is a strategy similar to the Chain-
of-Thought (CoT) prompting strategy: the QPL structure corresponds to
the steps of the computation when executing recursively the sub-expressions
according to the operational semantics of SQL. Learning to generalize to
complex programs on the basis of low-level executions remains a challenging
open question: can LLMs (pre-trained on next-word prediction) learn to plan
and learn to reason according to the semantic inference rules of the target
language properties. Semantic parsing with modular intermediate languages
promises to help study this fundamental questions.
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APPENDIX A

The Inception of QPL

The Query Plan Language (QPL) has had three generations during our re-
search. This appendix will cover these different generations, what led to their
syntax, and how they evolved.

The first generation of QPL had a nested structure, similar to a LISP program
(Figure A.1). The main advantage of this syntax is that every sub-tree in the
nested structure is valid QPL, so it can be built compositionally by wrapping
a sub-tree in another operator. However, there were a few major downsides
to this syntax:

• It is hard to read deeply nested QPL, as the innermost nodes are in-
dented too far to the right.

• The language models we use for our experiments were trained on natu-
ral language, not code, and this code-like syntax made it more difficult
for the model to learn.

• Converting this structure to CTE is harder, as CTEs are a linear se-
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quence of bindings, while this structure is a tree and requires some
post-processing.

[
[

Scan Table [ visitor ]
Predicate [ Level_of_membership = 1 ]
Output [ ID ],

Scan Table [ visit ]
Output [ visitor_ID , Total_spent ]

] Into: Join Predicate [ ID = visitor_ID ]
Output [ visit.Total_spent ]

] Into: Aggregate Output [ SUM(Total_spent) ]

Figure A.1: Nested QPL

Given the above shortcomings, we decided to convert the tree-like syntax
to a syntax that will be easier for large language models to learn and for
humans to read and understand. This led to the formulation of Flat QPL
(Figure A.2). Flat QPL takes the nested structure and flattens it to a list of
numbered lines. Every operator that is not a Scan, i.e., not a leaf operator,
takes line numbers as inputs, and these are the only inputs that the line is
allowed to use. In this structure, we don’t have the problem of readability,
as there’s no indentation; it is easier to go line-by-line and understand the
execution plan rather than reading from the inside-out; and perhaps most
importantly, large language models had an easier time “making sense” of this
new language, as it was just a series of steps.

The last step in QPL’s evolution was the removal of extraneous informa-
tion and ambiguity. This final version of QPL (Figure A.3) differs from the
previous version in the following ways:

• No table qualification where it’s not needed, e.g., in a Scan node scan-
ning the visit table, we don’t need to qualify every column with
visit..
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#1 = Scan Table [ visitor ]
Predicate [ Level_of_membership = 1 ]
Output [ ID ]

#2 = Scan Table [ visit ]
Output [ visitor_ID , Total_spent ]

#3 = Join [ #1, #2 ] Predicate [ ID = visitor_ID ]
Output [ visit.Total_spent ]

#4 = Aggregate [ #3 ] Output [ SUM(Total_spent) ]

Figure A.2: Flat QPL

• Line numbers are used as qualifiers in binary operators (Join, Union,
Intersect, Except) to denote from which input a column comes.

• Every aggregation now has an alias and that alias will be referenced
whenever that result is used.

These changes mainly improved the readability of QPL.

#1 = Scan Table [ visitor ]
Predicate [ Level_of_membership = 1 ]
Output [ ID ]

#2 = Scan Table [ visit ]
Output [ visitor_ID , Total_spent ]

#3 = Join [ #1, #2 ] Predicate [ #1.ID = #2.visitor_ID ]
Output [ #2.Total_spent ]

#4 = Aggregate [ #3 ] Output [ SUM(Total_spent) AS Sum_Total_spent ]

Figure A.3: QPL’s final form
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APPENDIX B

Grammar of QPL

<qpl> ::= <line>+
<line> ::= #<integer> = <operator>
<operator> ::= <scan>

| <aggregate>
| <filter>
| <sort>
| <topsort>
| <join>
| <except>
| <intersect>
| <union>

-- Leaf operator
<scan> ::= Scan Table [ <table-name> ] <pred>? <distinct>? <output-non-qualif>

-- Unary operators
<aggregate> ::= Aggregate [ <input> ] <group-by>? <output-non-qualif>
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<filter> ::= Filter [ <input> ] <pred> <distinct>? <output-non-qualif>
<sort> ::= Sort [ <input> ] <order-by> <with-ties>? <output-non-qualif>
<topsort> ::= TopSort [ <input> ] Rows [ <number> ] <order-by>

<withTies>? <output-non-qualif>

-- Binary operators
<join> ::= Join [ <input> , <input> ] <pred>? <distinct>? <output-qualif>
<except> ::= Except [ <input> , <input> ] <pred> <output-qualif>
<intersect> ::= Intersect [ <input> , <input> ] <pred>? <output-qualif>
<union> ::= Union [ <input> , <input> ] <output-qualif>

<group-by> ::= GroupBy [ <column-name> (, <column-name>)* ]
<order-by> ::= OrderBy [ <column-name> <dir> (, <column-name> <dir>)* ]
<with-ties> ::= WithTies [ true | false ]
<dir> ::= ASC | DESC
<pred> ::= Predicate [ <comparison> (AND | OR <comparison)* ]
<distinct> ::= Distinct [ true | false ]
<output-non-qualif> ::= Output [ <column-name> (, <column-name>)* ]
<output-qualif> ::= Output [ <qualif-column-name> (, <qualif-column-name>)* ]
<qualif-column-name> ::= # <number> . <column-name>
<input> ::= <integer>
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APPENDIX C

Constrained Decoding: PICARD for QPL

Most current semantic parsing models use fine-tuned Large Language Models
(LLMs) in an encoder-decoder architecture: the context (schema encoding
and question) is encoded by the model into a vector representation, which
is then used as an input to the decoder, which outputs tokens in an auto-
regressive manner to generate the target SQL query. When using pre-trained
language models that have been trained on natural language, the decoder has
difficulty generating syntactically correct SQL (or QPL) output. PICARD
[64] introduced a general approach to this overall difficulty called constrained
decoding: instead of eagerly selecting the most likely token at each stage
of the decoding, PICARD performs a beam-search strategy over multiple
candidate sequences. A token is sampled from the LLM at each stage and
passed to the k most successful prefix sequences. The prefix sequence and
the candidate token are inspected by an incremental parser for the target
language (SQL for PICARD, QPL in our case). If the parser confirms the
token can be appended to the candidate prefix and still obey the syntax
of the language, it is kept as a new candidate; otherwise, the beam search
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samples another candidate from the LLM.

In our experiments, we reimplemented PICARD, which originally tested the
constrained decoding strategy for SQL, by designing an incremental parser
for QPL. Our re-implementation consists of the QPL incremental parser and
a server that glues HuggingFace Transformers’ beam search with the incre-
mental parser.

To understand how the parser works, we will begin by understanding its type:

type SchemaReader[A] = ReaderT[Parser, SqlSchema, A]
type QplParser[A] = StateT[SchemaReader, QplState, A]

A QplParser[A] is a Parser[A]. A Parser[A] knows how to take a string
and convert it to some data type of our choosing, and we denote that with the
generic type A. In addition to being able to parse a string, a QplParser[A]
has two additional capabilities: the capability to read an environment of type
SqlSchema and the capability to maintain “global” state of type QplState.
These two capabilities allow us to perform semantic checks during parsing
and fail the parse if it doesn’t make sense given the environment and/or the
state.

When parsing a full QPL program, we are using a QplParser[Qpl], with
the Qpl type being defined as:

type Qpl = List[Line]

// `Operation` is one of the 10 QPL node types
case class Line(idx: Int, operation: Operation)

Before delving into the specifics of each sub-parser (one for each node type),
we need to understand the state maintained by the parser to construct a
lossy abstract syntax tree (AST) of QPL. The AST is lossy because we don’t
need to interpret or compile it at any point. We’re only interested in whether
the parse is successful or not. While we could parse QPL and keep the most
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trivial value () of type Unit, that would make it harder to debug. The
structure of the state is as follows:

case class QplState(
currentIdx: Int,
seen: Set[Int],
idxToTable: Map[Int, Table]

)

enum Table {
case Named(name: String, columns: List[Column])
case Indexed(idx: Int, columns: List[Column])

}

enum Column {
case Dummy // A "1 AS One" column
case Plain(name: String, typ: ColumnType, keys: List[KeyType])
case Aliased(name: String, typ: ColumnType, keys: List[KeyType])

}

For each line index, we keep a Table. The Table contains a list of Column,
and each Column contains its name, its data type, and whether it’s a primary
or foreign key (a column can be several keys, as is the case for cross tables,
or none at all).

For example, when parsing the following QPL:

#1 = Scan Table [ singer_in_concert ] Output [ concert_ID ]
#2 = Aggregate [ #1 ] GroupBy [ concert_ID ]

Output [ countstar AS Count_Star , concert_ID ]
#3 = Scan Table [ concert ] Output [ Theme , concert_Name , concert_ID ]
#4 = Join [ #2 , #3 ] Predicate [ #2.concert_ID = #3.concert_ID ]

Output [ #3.Theme , #2.Count_Star , #3.concert_Name ]

When we reach node #3, our state will have the following information:
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• We are at index 3

• We have previously seen indices 1 and 2

• The singer_in_concert table from line #1 has output the column
concert_ID, which is both a primary key of the singer_in_concert
table and a foreign key of the concert table (this is the information
we have from the schema)

• The indexed table from line #2 has output both concert_ID and the
special COUNT(*) column.

Below are the specific semantic checks that each sub-parser performs when
parsing a QPL line:

• Scan nodes have a predicate and an output. In the predicate, we make
sure that the types of the two sides of the comparison are the same and
that the column name in the predicate is indeed part of the scanned
table. In the output, we make sure that all columns are part of the
scanned table as well. The following Scan line fails parsing because of
a type mismatch between the Year column and the constant 'zero':

Scan Table [ concert ] Predicate [ Year >= 'zero' ]
Output [ Stadium_ID , Year ]

• Aggregate nodes have a GroupBy clause and an output. The out-
put will have at least one Aliased column, which signifies a column
that looks like SUM(column) AS Sum_column. We make sure that the
GroupBy columns belong to the input table and that all aggregates
have the same naming convention using the AS keyword. The follow-
ing Aggregate line fails to parse as it does not conform to the naming
convention:

Aggregate [ #1 ] Output [ AVG(Age) AS AgeAverage ]
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• Filter nodes are similar to Scan nodes in that their predicates are
similar, but Filter requires looking up the input columns’ types to
make sure the types in the two sides of the predicate match.

• Top nodes are simple, with only a Rows clause that has to be a strictly
positive integer.

• Sort nodes have an OrderBy clause, which we must make sure uses
columns previously output by the node’s input.

• TopSort is essentially Sort and Top in one operator and performs the
same checks as these two nodes.

• Join nodes are the most involved with respect to semantic checks. In
addition to type checking in the Predicate clause, we also must check
that if the predicate is an equality comparison, then one side must be
a primary key while the other must be a foreign key, and those keys
should reference the same table.

• Intersect and Except nodes are similar in that they have a predicate
but are not as complex as Join, as these nodes don’t require a primary
key-foreign key relationship in their predicate.

• Union nodes are the most simple nodes as they require no semantic
checks other than whether the output columns appear in the input.

There are also checks that are being performed for every sub-parser, such as
no duplicate columns in the output list, no output of columns that were not
output by preceding lines, and no inputs that were not seen before, i.e., we
don’t parse #2 as input if line #2 hasn’t been parsed yet.
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APPENDIX D

From SQL to Executable QPL

In order to convert the SQL queries in the Spider dataset to QPL and then
to executable SQL, we go through four phases:

1. Translate the SQL queries from the SQLite dialect to the T-SQL dialect

2. Generate execution plans

3. Construct QPL from execution plans

4. Generate CTEs from QPL

We will go over each one of these phases in detail.

D.1 SQLite to T-SQL Conversion

An implementation detail of the conversion from SQL to QPL is that we
need to generate an execution plan using Microsoft SQL Server 2019. SQL

81



Server does not support the SQLite dialect that Spider is written in but uses
its own dialect called T-SQL, so a translation between dialects is needed.

In order to translate SQLite to T-SQL, we use the existing tokenization of
queries in Spider to reconstruct the query. We make the following modifica-
tions:

• While SQLite uses the LIMIT keyword at the end of the query to limit
the number of results, T-SQL uses the TOP keyword after the SELECT
keyword to do the same thing. We search for uses of LIMIT and for each
one, replace it with the respective TOP along with the integer argument
to that keyword.

• In SQLite, it is valid to select an aggregated column (MIN, MAX, SUM,
COUNT, AVG) and a non-aggregated column without specifying the col-
umn by which the aggregates are grouped by. In T-SQL, this produces
an error. To mitigate this, we review the column list in the SELECT
clause, take the non-aggregated columns, and copy them to a new (or
existing) GROUP BY clause.

• SQLite supports a JOIN operation that has no predicate, i.e., while
we would usually see T1.C1 JOIN T2.C2 ON T1.C1 = T2.C2, SQLite
permits not specifying the ON part. This results in a cross-join (a
cartesian product of the two tables), and in T-SQL, we specify that by
adding the CROSS modifier to JOIN.

D.2 Execution Plan Generation

Once we have the T-SQL queries, we can run them through SQL Server and
get their execution plans. An SQL Server execution plan is an XML file
containing mostly statistics on how performant each part of the query is.
For our purposes, we ignore this data and use the tree structure embedded
in the execution plan to get information on which building blocks were used

82



when constructing the query. Figure D.1 shows an example of such a tree
structure.

Figure D.1: Execution Plan

D.3 Constructing QPL from Execution Plans

We now need to parse the execution plans’ XML and convert it to our
own language, QPL. This process is essentially about discarding informa-
tion, keeping only the bare minimum to create meaningful QPL.

During parsing of the XML, we identified 22 different node types. As QPL
has only 10 operators, it is obvious that some XML nodes contain no valuable
information or some contain duplicate information. For example, in an XML
execution plan, there is a difference between an <IndexScan> node and an
<IndexSeek> node. In QPL, however, these are both mapped to a Scan node,
as the semantics of both <IndexSeek> and <IndexScan> are the same but
with different implementations. The same goes for different implementations
of joins: there are different algorithms to perform a join, such as nested
loops or hash table lookup, but in QPL, we ignore those distinctions and
call the node simply Join. Another node we ignore is <ComputeScalar>,
which is used for simple computations that don’t affect the number of rows
being output, e.g., the SQL operator AVG(C) is actually implemented as
two operators one after the other: aggregate the sum and count of C, and
then compute the average by dividing the two. Another computation is type
conversions, such as integers to strings and integer size conversions. These do
not affect the semantics of the query, and so in QPL, we completely remove
the <ComputeScalar> node and, when applicable, “push” the operator to its
parent.
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At the end of the conversion from execution plans to QPL, we get “raw”
QPL. It is not yet in its final form, but it has all the information in order to
get it there. Figure D.2 shows an example of raw QPL. Raw QPL essentially
keeps all the qualified names, even when unnecessary (for example, if we scan
the singer table, we know the predicate can only use columns of that table,
so singer.Country can be shortened to Country), and does not yet use the
line numbering scheme inside QPL’s operators.

#1 = Scan Table [ singer ]
Predicate [ singer.Country = 'France' ]
Output [ singer.Age , singer.Country ]

#2 = Aggregate [ #1 ] Output [ AVG(singer.Age) ,
MIN(singer.Age) ,
MAX(singer.Age) ]

Figure D.2: Raw QPL

The raw QPL now needs to be post-processed to get it to its final form. In
this stage, we either remove the table qualification completely if the operator
is unary (in which case, it is obvious which table the column belongs to) or
substitute the table with its matching line number if it’s a binary operator.
We also take care to add aliases for all aggregations, e.g., turn SUM(C) to
SUM(C) AS Sum_C. This is important for two reasons: the first is that aggre-
gations don’t have a name for the returned column by default, which can be a
problem when using Python and the pandas library to read a result set into a
key-value data structure, as the column name acts as a key; second, because
we’re dealing with a data-flow graph, we need to be able to propagate values
from earlier lines to later lines. We do this by giving an aggregation a name
and propagating it to the later lines that use the exact same aggregation.

D.4 QPL to CTE Conversion

Once we have the final version of QPL, we need to execute it. Fortunately,
most SQL dialects, including T-SQL, support the Common Table Expression
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(CTE) syntax. CTEs allow us to create bindings of intermediary results to
tables and use them to create larger SQL queries. Figure D.3 shows an
example SQL query and its equivalent CTE.

To convert QPL to CTE, we go over the QPL line-by-line and convert each
operator to its respective CTE, taking care to remember what names we
give to each line so we can use it in later CTEs. Once we have one CTE per
line, we tie everything together by taking the last CTE name and running
SELECT * FROM LastCTE.

SQL:

SELECT AVG(age) AS Avg_age,
MIN(age) AS Min_age,
MAX(age) AS Max_age

FROM singer
WHERE country = 'France'

CTE:

WITH
CTE_1 AS (

SELECT age
FROM singer
WHERE country = 'France'

),
CTE_2 AS (

SELECT AVG(age) AS Avg_age,
MIN(age) AS Min_age,
MAX(age) AS Max_age

FROM CTE_1
)
SELECT * FROM CTE_2

Figure D.3: SQL and equivalent CTE
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APPENDIX E

User Experiment Details

We designed a user experiment to test the following hypothesis: programmers
identify whether a complex query in QPL corresponds to the intent of a
natural language question better than for SQL.

The programmers who participated in the experiment knew SQL (with more
than 5 years of experience in an industrial job) but had never heard of QPL
before. We, therefore, introduced QPL with a set of examples. This Ap-
pendix shows the documents we used.

The subjects of our user experiment received examples of pairs of questions
and SQL/QPL, along with instructions on what they should do, given their
test examples. The examples given are as follows:

Example 1:

Schema: car_1
cars_data : Id , MPG , Cylinders , Edispl , Horsepower , Weight ,

Accelerate , Year
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model_list : ModelId , Maker , Model
continents : ContId , Continent
countries : CountryId , CountryName , Continent
car_names : MakeId , Model , Make
car_makers : Id , Maker , FullName , Country

Question: What are the names and ids of all
countries with at least one car maker?

QPL:
#1 = Scan Table [ countries ] Output [ CountryId , CountryName ]
#2 = Scan Table [ car_makers ] Output [ Country ]
#3 = Join [ #1, #2 ] Predicate [ #1.CountryId = #2.Country ]

Output [ #1.CountryId , #1.CountryName ]
#4 = Aggregate [ #3 ] GroupBy [ CountryId ]

Output [ CountryId , CountryName , countstar as Count_Star ]
#5 = Filter [ #4 ] Predicate [ Count_Star >= 1 ]

Output [ CountryId , CountryName ]

Answer: True

Example 2:

Schema: student_transcripts_tracking
Addresses : address_id , line_1 , line_2 , line_3 , city , zip_postcode ,

state_province_county , country , other_address_details
Sections : section_id , course_id , section_name , section_description ,

other_details
Transcripts : transcript_id , transcript_date , other_details
Transcript_Contents : student_course_id , transcript_id
Students : student_id , current_address_id , permanent_address_id ,

first_name , middle_name , last_name , cell_mobile_number ,
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email_address , ssn , date_first_registered ,
date_left , other_student_details

Student_Enrolment_Courses : student_course_id , course_id ,
student_enrolment_id

Courses : course_id , course_name , course_description , other_details
Departments : department_id , department_name , department_description ,

other_details
Semesters : semester_id , semester_name , semester_description , other_details
Degree_Programs : degree_program_id , department_id , degree_summary_name ,

degree_summary_description , other_details
Student_Enrolment : student_enrolment_id , degree_program_id , semester_id ,

student_id , other_details

Question: What are the first, middle, and last
names, along with the ids, of all students who
enrolled in 2 degree programs in one semester?

QPL:
#1 = Scan Table [ Students ]

Output [ student_id , first_name ,
middle_name , last_name ]

#2 = Scan Table [ Student_Enrolment ] Output [ student_id ]
#3 = Join [ #1, #2 ] Predicate [ #1.student_id = #2.student_id ]

Output [ #1.student_id , #1.first_name ,
#1.middle_name , #1.last_name ]

#4 = Aggregate [ #3 ] GroupBy [ student_id ]
Output [ student_id , first_name ,

middle_name , last_name ,
countstar as Count_Star ]

#5 = Filter [ #4 ] Predicate [ Count_Star = 2 ]
Output [ student_id , first_name ,

middle_name , last_name ]
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Answer: False

Example 3:

Schema: flight_2
airlines : uid , Airline , Abbreviation , Country
airports : City , AirportCode , AirportName , Country , CountryAbbrev
flights : Airline , FlightNo , SourceAirport , DestAirport

Question: Which city has most number of arriving flights?

SQL:
SELECT TOP 1 T1.city
FROM AIRPORTS AS T1

JOIN flights AS T2
ON T1.airportcode = T2.destairport

GROUP BY T1.city
ORDER BY COUNT(*) DESC

Answer: True

Example 4:

Schema: cre_Doc_Template_Mgt
Ref_Template_Types : Template_Type_Code , Template_Type_Description
Templates : Template_ID , Version_Number , Template_Type_Code ,

Date_Effective_From , Date_Effective_To ,
Template_Details

Documents : Document_ID , Template_ID , Document_Name ,
Document_Description , Other_Details

Paragraphs : Paragraph_ID , Document_ID , Paragraph_Text , Other_Details
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Question: Which template type code is used by most
number of documents?

SQL:
SELECT TOP 1 T1.template_type_code
FROM Templates AS T1

JOIN documents AS T2
ON T1.template_id = T2.template_id

GROUP BY T1.template_type_code
ORDER BY COUNT(*) DESC

Answer: False

After being presented with the above examples, the subjects were asked to
perform the following tasks:

1. For each pair of question and SQL/QPL, answer whether the code
retrieves the correct information as asked in the question.

2. Record how long did it take you to reach a decision.

3. Rank the difficulty of the example, with 1 being “very easy” and 5
being “very hard”.
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APPENDIX F

Question Decomposition Prompt

We report in Chapter 3 on experiments where we learn to decompose natural
language questions into a sequence of simpler natural language questions. We
use GPT-3.5 (September 2023 version) through the OpenAI API in an in-
context learning (ICL) method to synthesize a training dataset by computing
decomposed natural language questions for each step in the corresponding
QPL program in the training dataset. We bootstrap the method by manu-
ally converting 10 specific QPL programs into a sequence of simple natural
language questions. We then feed some of these examples into the complex
ICL prompt shown below.

For each sample in the training and development sets of Spider-QPL, we
insert into this prompt the encoding of the schema (simple encoding in the
form of table names and column names), then the sample question and the
corresponding QPL program. We then expect GPT-3.5 to produce a question
decomposition in the form of one question for each step in the QPL program.

As specified in the prompt, we require the output to contain exactly the
same number of questions as there are steps in the QPL prompt. When this
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is not the case, we retry the prompt up to three times. In all cases, GPT-3.5
eventually produced an output that obeys this constraint.

The dataset that is eventually synthesized contains a list of pairs (original
Spider question, sequence of decomposed questions in natural language). We
then train a Question Decomposer model on this synthetic dataset, which,
given a question and a schema as input, returns a sequence of simple ques-
tions.

QPL is a formalism to describe data retrieval operations over an
SQL schema in a modular manner. A QPL plan is a sequence of instructions
for querying tabular data to answer a natural language question.
Forget everything you know about SQL. Only use the following explanations.

A schema is specified as a list of <table> specifications in the
format: <table>: <comma separated list of columns>

A plan contains a sequence of operations. All operations return
a stream of tuples. All operations take as input either a physical
table from the schema (for the Scan operation) or the output of other
operations.

This is the formal specification for each operation:

{Grammar from Appendix B}

Let's think step by step to convert QPL plan to a natural language
plan given scheme, question, and QPL that describes the question.

In the natural language plan: 1. You must have exactly the same
number of questions as there are steps in the QPL. 2. The questions
you generate must follow exactly the same order as the steps in the
QPL.

Example 1:

Schema:
Table Visitor (ID, Name, Age, Level_of_membership)
Table Museum (Museum_ID, Name, Open_Year, Num_of_staff)
Table Visit (Visitor_ID, Museum_ID, Total_Spent, Num_of_Ticket)
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Question:
What is the total ticket expense of the visitors whose membership
level is 1?

QPL Plan:
#1 = Scan Table [ visitor ] Predicate [ visitor.Level_of_membership
= 1 ] Output [ ID ]
#2 = Scan Table [ visit ] Output [ visitor_ID , Total_spent ]
#3 = Join [ #1, #2 ] Predicate [ visitor.ID = visit.visitor_ID ]
Output [ visit.Total_spent ]
#4 = Aggregate [ #3 ] Output [ SUM(visit.Total_spent) ]

Natural Language Plan:
#1 = Scan the table Visitor to find who are the visitors with membership
level 1
#2 = Scan the table Visit to find what is the total spent by visitors
during their visits
#3 = Join #1 and #2 to find what is the total spent by each visitor
with membership level 1 during their visits
#4 = Group #3 by Visitor and aggregate the sum of total spent to
find what is the total spent by all visitors with membership level
1 during their visit

{ Five more examples follow in a similar way. }

Now your turn:

Schema: {schema}

Question: {question}

QPL Plan: {qpl}

Natural Language Plan:

The full prompt can be found in the GitHub repository for the QPL project
at https://github.com/bgunlp/qpl.
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תקציר

(NLP) טבעית שפה בעיבוד משמעותי תחום מהווה SQL-ל מטקסט ההמרה משימת

מסדי וניהול אדם-מחשב אינטראקציית על השלכותיה בשל רבה לב לתשומת וזכתה

SQL (Structured Query-ל טבעית בשפה משאלות המרה של זו, משימה נתונים.

נתונים מסדי לבין מומחים שאינם משתמשים בין התקשורת על מקלה ,Language)
במערכות רלציוניים נתונים מסדי של משכיחותם נובע המשימה של חשיבותה רלציוניים.

אלו. נתונים מסדי מול העבודה את מנגישים SQL-ל טקסט ומודלי בעולם, רבות

תיאורטית משימה היא SQL-ל מטקסט ההמרה משימת המעשית, לחשיבותה מעבר

הבנת בתחום NLP מודלי של ביצועים לעומק לבחון מאפשרת היא שכן שימושית

רצויות תכונות ולוודא המתקבל הפלט את לנתח יכול כזה מודל של משתמש השפה.

פעולות או עמודות), או טבלאות (שמות בסכימה מסוימים פריטים כגון השאילתה, של

נכונה. אכן השאילתה של ההרצה תוצאת האם לבדיקה בנוסף זאת מסוימות, Join

ההמרה משימת את להפוך איך (1) הבאות: המחקר שאלות על עונים אנו זו, בעבודה

את המבצע מודל של הפלט את להפוך כיצד (2) קומפוזיוציונלית; יותר SQL-ל מטקסט

המשימה את המבצע למודל לגרום ניתן כיצד (3) למשתמשיו; מובן יותר להיות המשימה

הקלט. בשאלות קטנים שינויים בפני יותר עמיד להיות

מתודולוגיה ,QPL (Query Plan Language) השפה את מציגה הראשונה תרומתנו

שאילתות של הרצה בתוכניות משתמשים אנו שבה SQL-ל מטקסט בהמרה חדשנית

לתהליך מובילה מודלורית יעד ששפת ההשערה את לבדוק על-מנת ביניים כשפת SQL
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יותר מתקדמת שיטה מציע ביניים כשלב QPL של המימוש קומפוזיציונלי. יותר למידה

הדיוק את משפר ובכך מתאימות, SQL פקודות ויצירת משתמשים שאלות לפרשנות

נתונים. במסדי שאילתות עיבוד של והיעילות

משימות שתי על ניסויים ומבצעים Spider-QPL הנתונים מקבץ את מגדירים גם אנו

נוירונית, ארכיטקטורה אותה תחת ,QPL-ל טקסט והמרת SQL-ל טקסט המרת שונות,

להיות יכולים (pre-trained language models) מראש מאומנים שפה שמודלי ורואים

ל- מאשר QPL-ל בהמרה יותר טובה קומפוזיציונלית להכללה (fine-tuned) מכווננים

.SQL

שפת את מוצאים מוגבל תכנותי ידע עם שמשתמשים מראים אנו השנייה, בתרומתנו

QPL של זו תכונה מורכבות. שאילתות עבור במיוחד ,SQL מאשר יותר מובנת QPL
נתונים. מסדי עם משתמשים של יותר רחבה השתתפות מאפשרת היא שכן ביותר חשובה

נתונים, מסדי של ולמבנה לעיצוב הנוגע בכל השלטת כשפה האנגלית השפה של שכיחותה

למשתמשים משמעותי אתגר מהווה באנגלית, הינם והעמודות הטבלאות שמות דהיינו,

תחום את חוקרת השלישית תרומתנו האנגלית. בשפה שולטים ושאינם מומחים שאינם

על מענה של המשימה את חוקרים אנו רב-לשונית. במסגרת SQL-ל טקסט המרת

מצביעים ניסויינו בלבד. באנגלית המוגדרים נתונים למסדי פונות אשר בעברית שאלות

רב- "ממירים" של אימון מאפשר גדולים שפה במודלי האחרונה שההתקדמות כך על

המילים באוצר השונות המקור. שאלת על אוטומטיים תרגום בשירותי שימוש ע"י לשוניים

מצביעה תורגמה שהשאלה לאחר הנתונים במסדי וטבלאות לעמודות לפנייה המשמש

בסדרת .(schema linking) לסכימה הקישור בעיית על נוספת עבודה שנחוצה כך על

נמוכה חוסן רמת מראים ביותר החדישים המודלים גם כי מאשררים אנו ניסויים,

(תרגום ושוב" "הלוך תרגום התקפות כי ומראים SQL-ל מטקסט ההמרה במשימת

מאתגרות. עדיין הן לאנגלית) חזרה וממנה יעד לשפת מאנגלית

של החשיבות הדגשת ע"י סמנטי ניתוח של הבנתנו את מקדם זה מחקר לסיכום,

לתמוך ע"מ פשוטה אופרציונלית סמנטיקה בעלת ומודולרית פורמלית יעד שפת הצבת

מאומנים מודלים כאשר שגם מראות שלנו הניסויים תוצאות קומפוזיציונלית. בהכללה

המרת של סטנדרטיות מידה אמות לפי (90% (מעל ביותר גבוהה דיוק לרמת מגיעים

על עונה אכן המודל שתוצאת נמוכה ביטחון רמת על לשמור עלינו ,SQL-ל טקסט

לבסוף, מורכבות. שאילתות של מוגבלת הבנה יש למשתמשים שכן המשתמשים, צרכי

המאמץ חשיבות את מדגימות ושוב" "הלוך תרגום והתקפות רב-לשוניות שאילתות

והיצירתיות הרבות לדרכים בדומה לשונית, שונות לזהות מודלים של היכולת לשיפור

תוכן. לאותו להתייחס אנשים של
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אלחדד מיכאל פרופ' בהדרכת נעשתה העבודה

המחשב למדעי במחלקה

הטבע למדעי בפקולטה
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